The invention relates to a smart under-actuated bionic robot finger device with parallel-connected tendon ropes, which belongs to the technical field of anthropomorphic robots. A diarticular finger device comprises a pedestal, a first motor, a second motor, a juxta-articular shaft, a first finger segment, a distal-articular shaft, an tail end finger segment and a return spring. The device also comprises a first rope wheel, a second rope wheel, a third rope wheel, a first tendon rope, a second tendon rope and a third tendon rope. A polyarticular finger device also comprises at least one middlefinger segment and at least one middle rope wheel. The device comprehensively realizes the special effect of combining finger original configuration variability and self-adaptive grasp by utilizing the motors, the rope wheels, the tendon ropes and the return spring. The device can flexibly bend the middle joints of fingers before grasp to achieve a stable and anthropomorphic prebent gesture and grasps an object in a self-adaptive under-actuated mode when in grasp. The grasping action of the device more approaches to a human hand, and the device can self-adaptively and stably grasp different objects and is applicable to an anthropomorphic robot hand.