Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

10801 results about "Animation" patented technology

Electronic translator for assisting communications

An electronic translator translates input speech into multiple streams of data that are simultaneously delivered to the user, such as a hearing impaired individual. Preferably, the data is delivered in audible, visual and text formats. These multiple data streams are delivered to the hearing-impaired individual in a synchronized fashion, thereby creating a cognitive response. Preferably, the system of the present invention converts the input speech to a text format, and then translates the text to any of three other forms, including sign language, animation and computer generated speech. The sign language and animation translations are preferably implemented by using the medium of digital movies in which videos of a person signing words, phrase and finger spelled words, and of animations corresponding to the words, are selectively accessed from databases and displayed. Additionally the received speech is converted to computer-generated speech for input to various hearing enhancement devices used by the deaf or hearing-impaired, such as cochlear implants and hearing aids, or other output devices such as speakers, etc. The data streams are synchronized utilizing a high-speed personal computer to facilitate sufficiently fast processing that the text, video signing and audible streams can be generated simultaneously in real time. Once synchronized the data streams are presented to the subject concurrently in a method that allows the process of mental comprehension to occur. The electronic translator can also be interfaced to other communications devices, such as telephones. Preferably, the hearing-impaired person is also able to use the system's keyboard or mouse to converse or respond.
Owner:INTERACTIVE SOLUTIONS

Apparatuses, methods, and computer programs for displaying information on vehicles

InactiveUS6850209B2Flexible and effective and profitable usageCathode-ray tube indicatorsOptical signallingInformation controlMobile vehicle
A system for publicly displaying messages includes elements carried by an automotive vehicle. In some embodiments the vehicle carries a publicly visible electronic display; a sensor for sensing the brightness of light in the vicinity of the display; and illumination varying circuitry for varying the brightness of light generated by the display in response to brightness detected by the sensor. In some embodiments the vehicles carries a publicly visible display formed by ganging together a plurality of displays, each having at least 640×480 pixels; and video drive circuitry for causing images to be shown on the ganged display with different portions of individual images being shown on each of the individual displays. In some embodiments the vehicle has an automotive electrical system and carries a publicly visible high-bright display, capable of providing over 1000 NITS illumination and having 640 by 480 or greater pixel resolution; and video drive circuitry causing images to be shown on the display. In some embodiments the vehicle carries a publicly visible electronic display and a computer. The computer has video drive circuitry for causing images to be shown on the display, a memory device capable of storing representations of animated display images represented in vector-based form; and programming for enabling the computer to generate animated images from the vector-based animation representations. In some embodiments the vehicle receives commands and/or information controlling what it is to display via a wireless transceiver.
Owner:VERT INC

Method for representing real-time motion

A system 100 for tracking the movement of multiple objects within a predefined area using a continuation of overhead X-Y tracking cameras 24 with attached frequency selective filter 24f. Also employed are perspective Z filming cameras sets 30. Objects to be tracked, such as player 17, have been marked to include some form of frequency selective reflective material such as an ink. Typical markers include patches 7r and 7l, sticker 9 and tape 4a as well as additional body joint markers 17af through 17l. System 100 radiates selected energy 23a throughout the predefined area of tracking that is specifically chosen to reflect off said reflective materials used to mark for instance player 17. The reflected energy is then received by tracking cameras 24 while all other ambient light is blocked by filter 24f. Local Computer System 60 continuously captures images from said tracking cameras 24 which include only the minimum information created by said reflected energy. System 60 efficiently locates said markings on said multiple objects and uses this location information to determine for each marking its angle of rotation, angle of azimuth and distance from a designated origin 17o local to player 17. Local origin 17o is then expressed as a three-dimensional coordinate with respect to the origin of the playing venue 2a. The continuous stream of tracked three-dimensional coordinates, defining the body joints on players such as 17, is then transmitted to a remote computer where it can be used to drive a graphic re-animation of the object movement. Along with this re-animation, additional performance measurements may be derived from the continuous stream and automatically made available in real-time.
Owner:MAXX HLDG

Internet-based method of and system for monitoring space-time coordinate information and biophysiological state information collected from an animate object along a course through the space-time continuum

InactiveUS6677858B1Avoiding shortcomingAvoiding shortcoming and drawbackInstruments for road network navigationInformation formatAnimationWireless data
An Internet-based method of and system for monitoring space-time coordinate information and biophysiological state information collected from an animate object moving along a course through the space-time continuum. The Internet-based system comprise a wireless GSU-enabled client network device affixed to the body of an animate object. The wireless device includes a global synchronization unit (GSU) for automatically generating time and space (TS) coordinate information corresponding to the time and space coordinate of the animate object with respect to a globally referenced coordinate system, as the animate object moves along a course through the space time continuum. The device also includes biophysiological state sensor affixed to the body of the animate object, for automatically sensing the biophysiological state of the animate object and generating biophysiological state information indicative of the sensed biophysiological state of the animate object along its course. The wireless device also includes a wireless date transmitter for transmitting the TS coordinate information and the biophysiological state information through free-space. A TS-stamping based tracking server receives the TS coordinate information and the biophysiological state information through in a wireless manner, and stores the same as the animate object moves along its course. An Internet information server serves Internet-based documents containing the collected TS coordinate and biophysiological state information. An Internet-enabled client system enables authorized persons to view the served Internet-based documents and monitor the collected TS coordinate and biophysiological state information, for various purposes.
Owner:REVEO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products