Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

727results about "Safety devices for pressure lubrication" patented technology

Force sensor system for use in monitoring weight bearing

A force sensor system for use in monitoring weight bearing on a location. The force sensor system comprises at least one a foot force sensor, a palm force sensor, and a knee force sensor. The foot force sensor comprises a flexible insole containing a plurality of inflatable pockets that are inflated with air or liquid. The palm force sensor and knee force sensor each comprise a wrap to be worn around the palm and knee, respectively. Each wrap comprises a pocket. Each pocket is connected to a tube that, in turn, connects with a pressure sensor and a connector coupling that is remote from the pocket. Each coupling contains a valve. The valve opens to allow inflation and deflation of each inflatable pocket. The pressure sensors measure the air or liquid pressure within each of the inflatable pockets, and convert the corresponding pressure signal into a suitable output signal medium, usually electrical signals. The output signal from the sensors provides accurate real time input data to a weight bearing biofeedback system or to control a stimulator for activation of an electronic orthosis to normalize dynamic gait patterns.
Owner:ANDANTE MEDICAL DEVICES

Emergency lubrication system

An emergency lubrication system for a turbine engine includes a reservoir 50 containing a reserve quantity of lubricant 52 and having a lubricant inlet 54 and a lubricant outlet 56. A lubricant supply line 62 and a lubricant outlet line 66 each have a respective valves 64, 68 for regulating lubricant flow into and out of the reservoir. A fluid supply line 70 includes a valve 72 for selectively establishing communication between the reserve quantity of lubricant and a source of pressurized fluid. During normal operation the lubricant outlet valve continuously releases lubricant at a normal rate to the component requiring lubrication while the lubricant inlet valve concurrently admits fresh lubricant into the reservoir. During abnormal operation, the lubricant inlet valve closes in response to abnormally low lubricant pressure outside the reservoir thereby preventing backflow of reserve lubricant out of the reservoir. The fluid inlet valve opens to admit pressurized fluid into the reservoir thus pressurizing the reserve lubricant. The lubricant outlet valve opens or cycles open and closed in response to a command from a controller 26 so that the pressurized fluid forces lubricant through the outlet 56 as a subnormal rate, which persists until the lubricant reserve is substantially depleted. The subnormal rate is ideally achieved by intermittently releasing lubricant from the reservoir, but may also be achieved by releasing a continuous stream of lubricant at a rate less than the normal rate of release.
Owner:RTX CORP

System for detecting fluid changes and sensoring devices therefor

A sensor device for detecting a change in the level of fluid within tissue of a body includes: a housing having a plurality of bridge segments, the bridge segments connecting at intersections and being arranged to circumscribe an opening defined by the housing; and a plurality of antenna elements at least partially seated within the housing at intersections of the bridge segments. Each of the plurality of antenna elements includes a generally planar antenna mounted to a substrate material at a base of the planar antenna. An outer surface of the planar antenna faces away from the substrate. Each of the plurality of antenna elements further includes an electrical shield surrounding the substrate. A sensor for detecting a change in the level of fluid within tissue of a body including a first antenna pair includes a first transmitting antenna and a first receiving antenna. The first transmitting antenna is spaced from and connected to the first receiving antenna by a first bridging segment. The sensor further includes at least a second antenna pair including a second transmitting antenna and a second receiving antenna. The second transmitting antenna is spaced from and connected to the second receiving antenna by a second bridging segment. The first antenna pair and the second antenna pair are placed in spaced connection by a first spacing segment and a second spacing segment so that an open area is defined by the first antenna pair, the second antenna pair, the first spacing segment and the second spacing segment.
Owner:BAYER HEALTHCARE LLC

Apparatus and method for lubricant condition control and monitoring

A volumetric lubricant dispensing apparatus for delivering a precise volume of lubricant, such as oil, to a rotating machine element. The delivery mechanism includes a piston and cylinder assembly. A plurality of sensors are utilized to record operating conditions of the machine, element, environment, and lubricant. The apparatus is controlled either manually or with the aid of a controller unit such as a microprocessor. The output from each sensor is inputted into the microprocessor wherein an algorithm computes an responsive output. The responsive output is sent to the piston and cylinder assembly, which maintains an optimum lubricant condition within the reservoir wherein a rotating machine element located. Alternatively, for the purpose of qualitative control, the present invention may be described as a system intended for controlling lubricants, both mineral (natural) and synthetic based by measuring the condition characteristics of the lubricant. Some condition characteristics may include water or moisture content (the content could be any liquid, e.g., solvents like ketones are known to change condition characteristics like viscosity) and viscosity. Viscosity is related to temperature, therefore, temperature correlation to viscosity is helpful to provide relative indications for condition characteristics like lubricant flow.
Owner:TRICO CORP

Pump having stepper motor and overdrive control

Apparatus and method for supplying lubricant to a plurality of lubrication sites. Embodiments include a pump with venting and non-venting piston return, a pump with stirrer and direct feed mechanism, a pump with CAN system and self-diagnostics, a pump with heated housing and reservoir and a pump with stepper motor and overdrive control.
Owner:LINCOLN INDUSTRIES CORP

Lubrication system

The present invention is directed to lubrication system having a reservoir having a body. A follower is moveably disposed in the body. The system further comprises an alarm system having an electrical switch operably associated with the follower. The alarm generates a signal when the follower is at a predetermined location in the body. The alarm system may generate a signal when the follower is at a lower location in the body such as when the reservoir has an amount of lubricant representing a predetermined amount of usage time remaining. The alarm system may also generate a signal when the follower is at an upper location in the body such as when the reservoir is filled with lubricant wherein the signal acts to automatically interrupt the fill of lubricant.
Owner:METCO ENG

Power cutter

A power cutter comprising: a housing 2; an engine 24 mounted within the housing 2; a support arm 7 mounted on the housing and which projects forward of the housing; a blade mounting mechanism 70,90, 86, 92 rotatably mounted on the end of the support arm and which is capable of being rotationally driven by the engine 24 when the engine is running; a liquid fuel aeration mechanism 126 to generate aerated fuel for the engine; an air intake 314 for the provision of air for the liquid fuel aeration device 126; an air filtration mechanism 316 to filter the air drawn in from the air intake for the liquid fuel aeration mechanism; a fuel tank 124 for providing fuel to the liquid fuel aeration mechanism; and an exhaust 146 through which the exhaust gases generated by the operation of the engine are expelled; wherein the air filtration mechanism comprises an air filter 320 comprising a plurality of pleats and wherein the air filtration mechanism further comprises an air filter cleaning mechanism comprising a moveable pleat stroker 328; 342; 420 located adjacent the air filter 320 and which is capable of being moved over the pleats of the air filter 320, and which, when moved over the pleats, engages with the pleats and causes the pleats to flex in order to knock any dust trapped on the pleats, off the pleats.
Owner:BLACK & DECKER INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products