Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

199results about "Galvano-magnetic devices" patented technology

MRAM with split read-write cell structures

An MRAM cell is formed in two separate portions. A first portion, that includes a pinned layer, a tunneling barrier layer and first free layer part, is used to read the value of a stored bit of information. A second portion includes a second free layer part on which information is written and stored. The second free layer part is formed with a high aspect ratio cross-section that renders it strongly magnetically anisotropic and enables it to couple to the relatively isotropic first free layer through a magnetostatic interaction. This interaction aligns the magnetization of the first free layer part in an opposite direction to the magnetization of the second free layer part. The magnetic orientation of the first free layer part relative to that of its adjacent pinned layer determines the resistance state of the first cell portion and this resistance state can be read by passing a current through the first cell portion. Thus, in effect, the first cell portion becomes a remote sensing device for the magnetization orientation of the second free layer part
Owner:HEADWAY TECH INC

Magnetoresistive effect element and magnetic memory

It is possible to provide a magnetoresistive effect element and a magnetic storage which has thermal stability even if it is made fine and in which the magnetization in the magnetic recording layer can be inverted at a low current density. A magnetoresistive effect element includes: a magnetization pinned layer having a magnetization pinned in a direction; a magnetization free layer of which magnetization direction is changeable; a tunnel barrier layer provided between the magnetization pinned layer and the magnetization free layer; a first antiferromagnetic layer provided on the opposite side of the magnetization pinned layer from the tunnel barrier layer; and a second antiferromagnetic layer which is provided on the opposite side of the magnetization free layer from the tunnel barrier layer and which is thinner in thickness than the first antiferromagnetic layer, wherein the direction of the magnetization of the free magnetization layer can be converted by pouring an electron whose polarity is changed in spin polarization into the free magnetization layer.
Owner:KK TOSHIBA

Magnetoelectric random storage unit and storage with same

The invention discloses a magnetoelectric random storage unit which comprises a ferroelectric oxide layer, a ferromagnetic free layer, a tunnel barrier layer, a ferromagnetic fixed layer, a first electrode and a second electrode, wherein the ferromagnetic free layer is formed on the ferroelectric oxide layer; the tunnel barrier layer is formed on the ferromagnetic free layer; the ferromagnetic fixed layer is formed on the tunnel barrier layer; the first electrode and the second electrode are formed on two sides of the ferroelectric oxide layer; and under the actions of the electric field applied to the ferroelectric oxide layer by the first electrode and the second electrode, the magnetization direction in the ferromagnetic free layer is controlled through the magnetoelectric coupling action. The invention also provides a storage with the magnetoelectric random storage unit. The embodiment of the invention can write in information data with the electric field, and has the advantages of nonvolatility, low write-in power consumption, high storage density and the like.
Owner:TSINGHUA UNIV

Semiconductor device and magneto-resistive sensor integration

A magnetic-sensing apparatus and method of making and using thereof is provided. The sensing apparatus may be fabricated from semiconductor circuitry and a magneto-resistive sensor. A dielectric may be disposed between the semiconductor circuitry and the magneto-resistive sensor. In one embodiment, the semiconductor circuitry and magneto-resistive sensor are formed into a single package or, alternatively, monolithically formed into a single chip. In another embodiment, some of the semiconductor circuitry may be monolithically formed on a first chip with the magneto-resistive sensor, while other portions of the semiconductor circuitry may be formed on a second chip. As such, the first and second chips may be placed in close proximity and electrically connected together or alternatively have no intentional electrical interaction, Exemplary semiconductor devices that might be implemented include, without limitation, capacitors, inductors, operational amplifiers, set / reset circuitry for the magneto-resistive sensors, accelerometers, pressure sensors, position sensing circuitry, compassing circuitry, etc.
Owner:HONEYWELL INT INC

Magnetic memory, a method of manufacturing the same, and semiconductor integrated circuit apparatus

A magnetic memory includes a magnetic tunneling junction element having a reference layer, a tunnel barrier layer and a recording layer laminated in order, information being written to the recording layer in accordance with spin injection magnetization reversal caused by a current, information written to the recording layer being read out using a current. The magnetic tunneling junction element is disposed on a plug connected to a selection transistor, and a sidewall insulating film covering a side portion of the recording layer of the magnetic tunneling junction element is formed.
Owner:SONY CORP

Thin film 3 axis fluxgate and the implementation method thereof

There is provided a thin film tri-gate fluxgate for detecting a component of a magnetic field in directions of three axes, the thin film tri-gate fluxgate comprising: two first thin film fluxgates of a bar-type disposed on a plane for detecting horizontal components of the magnetic field in direction of dual axis; and a plurality of second thin film fluxgates for detecting a vertical component of the magnetic field, wherein each of the first thin film fluxgates and the plurality of the second thin film fluxgates comprises a drive coil for applying a power, a pickup coil for detecting a voltage and, a magnetic thin film, and wherein the plurality of the second thin film fluxgates are substantially perpendicular to each of the first thin film fluxgates wherein a length of the magnetic thin film of each of the plurality of the second thin film fluxgates is shorter than that of each of the two first thin film fluxgates, and wherein two end portions of each of the plurality of the second thin film fluxgates is wider than a center portion thereof.
Owner:MICROGATE
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products