Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

188results about "Different record carrier forms" patented technology

Dot-patterned structure magnetic recording medium and method for production thereof

Disclosed herein are a dot-patterned structure for magnetic recording bits and a magnetic recording medium provided therewith. The former exhibits high functionality and high performance owing to good crystallinity. The dot-patterned structure is composed of a first layer, which is continuous, and a second layer, which is discrete. The magnetic recording medium having a dot-patterned recording layer is formed by the steps of treating an underlying layer by lithography, thereby forming grooves, filling the grooves by epitaxial growth with the same material as the underlying layer, removing the photoresist used for lithography in a solvent, thereby forming pits, and filling the pits by epitaxial growth with a magnetic film as the recording layer.
Owner:HITACHI LTD

Magnetic media with improved exchange coupling

A magnetic recording medium includes a substrate, an underlayer, a lower magnetic layer formed on the underlayer, an intermediate layer, and an upper magnetic layer formed on the intermediate layer. The intermediate layer is typically Ru, and promotes antiferromagnetic coupling between the upper and lower magnetic layers. The upper and lower magnetic layers are typically Co alloys. The lower magnetic layer has a high saturation magnetization Ms to promote high exchange coupling between the upper and lower magnetic layers. The dynamic coercivity of the lower magnetic layer is lower than the exchange field to ensure rapid switching of the lower magnetic layer.
Owner:WESTERN DIGITAL TECH INC

Absorption enhanced media for energy assisted magnetic recording

A magnetic recording media is disclosed. The media comprises a substrate, a recording layer disposed over the substrate, and a metallic layer disposed between the recording layer and the substrate. The recording layer is configured to receive an electromagnetic radiation, absorb a first portion of the electromagnetic radiation, and transmit a second portion of the electromagnetic radiation. The metallic layer comprises a non-magnetic metal and configured to reflect at least some of the second portion of the electromagnetic radiation towards the recording layer.
Owner:WESTERN DIGITAL TECH INC

Perpendicular magnetic recording medium and process for manufacture thereof

An object of the present invention is to provide a perpendicular magnetic recording medium in which each space between crystal grains of a first magnetic recording layer is so designed as to allow the layer to also have a function as a continuous layer, and a method of manufacturing a perpendicular magnetic recording medium. In a perpendicular magnetic recording medium 100 according to the present invention, a first magnetic recording layer 122a and a second magnetic recording layer 122b are ferromagnetic layers each having a granular structure in which a grain boundary part made of a non-magnetic substance is formed between crystal grains each grown in a column shape and, in the first magnetic recording layer 122a, an intergranular distance defined by an average of shortest distances between grain boundary parts each between a crystal grain and its adjacent crystal grain is equal to or shorter than 1 nm.
Owner:WESTERN DIGITAL TECH INC

Interactive asynchronous game play architecture

In embodiments of the present invention improved capabilities are described for serving a computer game, comprising: (a) providing two separate storage facilities accessible from a server, the first storage facility comprising fast response searchable memory for storage of recently produced game play data, and the second storage facility comprising a structured database for longer term storage of game play data, the first memory having a data search and data retrieval speed that is substantially faster than the second memory; (b) receiving, at the server, a game play request from a live gaming participant with a desired opponent attribute; (c) in response to the game play request, searching the first memory, based on the attribute, to identify prior game play data corresponding to an appropriate opponent; and (d) presenting a multi-player game environment where the live gaming participant can play against and have two-way interactions with an apparently live opponent.
Owner:TETRIS ONLINE INC

Method for manufacturing magnetic recording medium and magnetic recording and reproducing apparatus

A method for manufacturing a magnetic recording medium (30) having magnetically separate magnetic recording patterns on at least one surface of a nonmagnetic substrate (1), includes the steps of forming a magnetic layer (2) on the nonmagnetic substrate, forming a mask layer (3) on the magnetic layer, forming a resist layer (4) on the mask layer, transferring negative patterns of the magnetic recording patterns to the resist layer using a stamp (5), removing portions of the mask layer which correspond to the negative patterns of the magnetic recording patterns, implanting ions in the magnetic layer from a resist layer-side surface to partly demagnetize the magnetic layer, and removing the resist layer and the mask layer. A magnetic recording and reproducing apparatus includes the above magnetic recording medium (30), a driving section (11) that drives the magnetic recording medium in a recording direction, a magnetic head (27) including a recording section and a reproducing section, a device (28) for moving the magnetic head relative to the magnetic recording medium, and recording and reproducing signal processing device (29) for inputting a signal to the magnetic bead and reproducing an output signal from the magnetic head.
Owner:SHOWA DENKO KK

Composite heat assisted magnetic recording media with temperature tuned intergranular exchange

A thin film structure comprises a first layer including a first plurality of grains of magnetic material having a first intergranular exchange coupling, and a second layer positioned adjacent to the first layer and including a second plurality of grains of magnetic material having a second intergranular exchange coupling, wherein the second intergranular exchange coupling is larger than the first intergranular exchange coupling and wherein the Curie temperature of the first layer is greater than the Curie temperature of the second layer. A data storage system including the thin film structure is also provided.
Owner:SEAGATE TECH LLC

Method for magnetic recording on patterned multilevel perpendicular media using variable write current

A magnetic recording method uses a patterned perpendicular magnetic recording medium where each magnetic block or island contains a stack of individual magnetic cells to providing multilevel recording. Each cell in an island is formed of a material or set of materials to provide the cell with perpendicular magnetic anisotropy and is a single magnetic domain. Each cell is magnetically decoupled from the other cells in its island by nonmagnetic spacer layers. Thus each cell can have a magnetization (magnetic moment) in one of two directions (into or out of the plane of the layer making up the cell), and this magnetization is independent of the magnetization of the other cells in its island. This permits multiple magnetic levels or states to be recorded in each magnetic island.
Owner:WESTERN DIGITAL TECH INC

Magnetic Recording Medium, Linear Magnetic Recording and Reproduction System and Magnetic Recording and Reproduction Method

The present invention relates to a magnetic recording medium comprising a magnetic layer comprising a ferromagnetic powder and a binder on a nomnagnetic support. A product, Mrδ, of a residual magnetization Mr of the magnetic layer and a thickness δ of the magnetic layer is equal to or greater than 2 mT•μm and equal to or less than 12 mT•μm, a squareness in a perpendicular direction is equal to or greater than 0.4 and equal to or less than 0.7, and a squareness in a longitudinal direction is equal to or greater than 0.3 but less than 0.6.
Owner:FUJIFILM CORP

Composite heat assisted magnetic recording media with temperature tuned intergranular exchange

A thin film structure comprises a first layer including a first plurality of grains of magnetic material having a first intergranular exchange coupling, and a second layer positioned adjacent to the first layer and including a second plurality of grains of magnetic material having a second intergranular exchange coupling, wherein the second intergranular exchange coupling is larger than the first intergranular exchange coupling and wherein the Curie temperature of the first layer is greater than the Curie temperature of the second layer. A data storage system including the thin film structure is also provided.
Owner:SEAGATE TECH LLC

Magnetic recording medium having a specific relation of coercive force HC and residual magnetization MR in perpendicular direction to substrate surface

InactiveUS7038873B2Improve recording performanceImprove performance information retentionCombination recordingRecord information storageRecording layerUltimate tensile strength
A perpendicular magnetic recording medium has a substrate, a magnetic functional layer provided on the substrate, and a magnetic recording layer stacked in contact with the magnetic functional layer and having perpendicular magnetic anisotropy. −4×2πMs2≦Ku≦6×2πMs2 is satisfied, wherein Ku represents a perpendicular magnetic anisotropy constant of the magnetic functional layer and Ms represents a saturation magnetization. The magnetic moment of the magnetic functional layer is rotated in a direction of an applied magnetic field during the recording, and the magnetic moment acts on the magnetization of the recording layer in such a manner that the applied magnetic field is assisted thereby. Minute magnetic domains can be stably retained and excellent thermal disturbance resistance can be obtained.
Owner:HITACHT MAXELL LTD

Granular perpendicular magnetic recording media with improved corrosion resistance by SUL post-deposition heating

A method of manufacturing a granular perpendicular magnetic recording medium with improved corrosion resistance comprises sequential steps of providing a non-magnetic substrate including a surface; forming a soft magnetic underlayer (SUL) over the surface; post-deposition heating the SUL; forming an intermediate layer stack over the heated SUL; and forming at least one granular, magnetically hard perpendicular magnetic recording layer over the intermediate layer stack. Heating of the SUL prior to formation of the intermediate layer stack results in formation of an intermediate layer stack with a smoother surface and a granular perpendicular recording layer with increased corrosion resistance than when SUL post-deposition heating is not performed.
Owner:SEAGATE TECH LLC

Methods for embossing and embossed articles formed therby

A method for manufacturing an embossed surface comprising a polymer with a first glass transition temperature Tg1 comprises embossing the surface a temperature Temb; and raising the first glass transition temperature Tg1 of the embossed polymeric surface to a second glass transition temperature Tg2 such that Tg2>Temb. In another embodiment, a method for improving the release of a polymeric surface from an embossing tool comprises incorporating of one or more of fluorine atoms, silicon atoms, or siloxane segments into the backbone of polymer. The methods are particular suited for direct patterning of photoresists, fabrication of interdigitated electrodes, and fabrication of data storage media.
Owner:SABIC INNOVATIVE PLASTICS IP BV

Magnetic recording media with enhanced writability and thermal stability

Aspects are directed to recording media with enhanced magnetic properties for improved writability. Examples can be included or related to methods, systems and components that allow for improved writability while reducing defects so as to obtain uniform magnetic properties such as uniformly high anisotropy and narrow switching field distribution. Some examples include a recording medium with an exchange tuning layer inserted between the hard layer and the soft, semi-soft or thin semi-hard layer so as to maximize the writability improvement of the media. Preferably, the exchange tuning layer is granular and reduces or optimizes the vertical coupling between the hard layer and the soft, semi-soft or semi-hard layer of a magnetic recording or storing device.
Owner:SEAGATE TECH LLC

Magnetic random access memory (MRAM) having increased reference layer anisotropy through ion beam etch of magnetic layers

A Magnetic Random Access Memory (MRAM) cell and array for storing data. The MRAM array includes a memory cell having a magnetic pinned layer, a magnetic free layer and a non-magnetic spacer or barrier layer sandwiched between the pinned and free layer. The pinned layer has magnetization that is pinned, and the free layer has a magnetization that is free to rotate but is stable in directions that are parallel or antiparallel with the magnetization of the pinned layer. The free layer has a magnetic anisotropy the maintains the stability of the free layer magnetization. The free layer anisotropy is induced by a surface roughness either in the surface of the free layer itself, or in the surface of the underling barrier / spacer layer. This anisotropic roughness is induced by an angled direct ion milling.
Owner:WESTERN DIGITAL TECH INC

Perpendicular magnetic recording media

A perpendicular magnetic recording medium having a good thermal stability and a high recording density is provided. The perpendicular magnetic recording medium includes at least a first and a second perpendicular magnetic recording layer and a substrate supporting the first and the second perpendicular magnetic recording layers. The first and the second perpendicular magnetic recording layers have different physical / magnetic properties and are formed of materials that compensate the different physical / magnetic properties. The first and the second perpendicular magnetic recording layers are selected from a layer for improving perpendicular magnetic anisotropic energy (Ku), a layer for reducing the size of crystal grains, a layer for reducing the size of magnetic domains, a layer for increasing an SNR, a layer for improving signal output, a layer for reducing noise, a layer for improving the uniformity of crystal grain sizes, and a layer for improving the uniformity of magnetic domain sizes.
Owner:INST FOR INFORMATION TECH ADVANCEMENT +1

Magnetic recording medium having at least two coupled magnetic layers, magnetic storage apparatus and recording method

A magnetic recording medium is provided with a first magnetic layer, a nonmagnetic coupling layer provided on the first magnetic layer, and a second magnetic layer provided on the nonmagnetic coupling layer. The first and second magnetic layers are exchange-coupled, and have magnetization directions which are mutually parallel in a state where no external magnetic field is applied thereto, and the first magnetic layer switches the magnetization direction thereof before the second magnetic layer in response to a recording magnetic field which switches the magnetization directions of the first and second magnetic layers.
Owner:SHOWA DENKO KK

Magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus

The present invention provides a magnetic recording medium which enables improvement of the layer quality of magnetic layer grown on the surface of a soft magnetic underlayer by conducting excellent control of crystal orientation by imparting an optimal half-width of the Rocking curve (Δθ50), as well as obtainment of SNR that suppresses generation of TA and enables realization of high-density recording. The magnetic recording medium includes a soft magnetic underlayer, an orientation control layer, a perpendicular magnetic recording layer, and a protective layer, which are disposed on top of a non-magnetic substrate; wherein the magnetic anisotropy ratio (Hmr / Hmc) of the soft magnetic underlayer is 1 or less, and Δθ50 is 1 to 6 degrees. The soft magnetic underlayer is formed on the primary surface of the non-magnetic substrate where the primary surface has been polished one substrate at a time by a sheet-type texture processing device using polishing tape and a slurry containing colloidal silica abrasive grain.
Owner:SHOWA DENKO KK

Recording medium and method of making the same

A recording medium includes a substrate, a recording layer provided with perpendicular magnetic anisotropy for recording of information, a foundation layer disposed between the substrate and the recording layer, an initial layer which is greater in surface tension than the foundation layer and held in contact with a recoding-layer-side surface of the foundation layer, and a functional layer held in contact with a recoding-layer-side surface of the initial layer.
Owner:FUJITSU LTD

Information storage medium using ferroelectric, method of manufacturing the same, and information storage apparatus including the same

Provided is an information storage medium using a ferroelectric, including a substrate having an amorphous crystal structure, an electrode layer formed on the substrate, and a ferroelectric layer in a (001) direction formed on the electrode layer.
Owner:POHANG UNIV OF SCI & TECH +1

Tracks including magnetic layer and magnetic memory devices comprising the same

A magnetic memory device includes a track in which different non-magnetic layers are respectively formed on upper and lower surfaces of a magnetic layer. One of the two non-magnetic layers includes an element having an atomic number greater than or equal to 12. Accordingly, the magnetic layer has a relatively high non-adiabaticity (β).
Owner:SAMSUNG ELECTRONICS CO LTD

Magnetic recording medium and method of manufacturing same

A magnetic recording medium is formed by stacking in order, on a nonmagnetic base, at least an underlayer, magnetic recording layer, and protective layer. The magnetic recording layer includes a plurality of magnetic layers and an exchange-coupling control layer, and the magnetic recording medium is characterized in that a physical pattern is formed in the exchange-coupling control layer. The exchange-coupling control layer is located between the magnetic layers of the magnetic recording layer.
Owner:FUJI ELECTRIC CO LTD

Antiferromagnetically coupled magnetic recording medium possessing three coupled magnetic layers and magnetic storage apparatus

InactiveUS6881496B2Improving the thermal stability without deteriorating the resolution and the NLTSImprove thermal stabilityDifferent record carrier formsSoldering apparatusAntiferromagnetic couplingMagnetic storage
A magnetic recording medium has first, second and third magnetic layers having magnetization directions which are alternately antiparallel in a state where no external magnetic field is applied on the magnetic recording medium, with a first nonmagnetic layer interposed between the first and second magnetic layers and a second nonmagnetic layer interposed between the second and third magnetic layers. A relationship Ms2×t2<(Ms1×t1+Ms3×t3) stands, where Ms1, Ms2 and Ms3, and t1, t2 and t2 respectively denote saturation magnetizations and thicknesses of the first, second and third magnetic layers.
Owner:SHOWA DENKO KK
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products