Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1219 results about "Optical networking" patented technology

Optical networking is a means of communication that uses signals encoded onto light to transmit information among various nodes of a telecommunications network. They operate from the limited range of a local-area network (LAN) or over a wide-area network (WAN), which can cross metropolitan and regional areas all the way to national, international and transoceanic distances. It is a form of optical communication that relies on optical amplifiers, lasers or LEDs and wave division multiplexing (WDM) to transmit large quantities of data, generally across fiber-optic cables. Because it is capable of achieving extremely high bandwidth, it is an enabling technology for the Internet, the telephone, and the communication networks that transmit the vast majority of all human and machine-to-machine information.

Passive optical network system and downlink transmission method thereof

The embodiment of the invention discloses a passive optical network system and a downlink transmission method thereof. The passive optical network system comprises an optical line terminal, an optical distribution network and a plurality of optical network units. The optical line terminal is used to send a downlink multi-wavelength optical signal composed of a plurality of downlink optical signal wavelength division multiplexing having different wavelengths, and the optical distribution network comprises a first-stage optical splitter, a plurality of second-stage optical splitters and a plurality of filter modules. The first-stage optical splitter is used to divide a downlink multi-wavelength signal sent by the optical line terminal into a plurality of downlink multi-wavelength signals, the plurality of filter modules are used to carry out filter processing on the plurality of downlink multi-wavelength signals to obtain a downlink single wavelength optical signal of which the wavelength corresponds to a channel central wavelength; wherein, the channel central wavelengths of the plurality of filter modules respectively correspond to the plurality of downlink optical signals having different wavelengths, the second-stage optical splitters are used to carry out spectral processing on the downlink single wavelength signal and then provide the downlink single wavelength signal to the optical network unit.
Owner:李亚泽

Method and Apparatus for Deriving Parameters of Optical Paths in Optical Networks Using Two-wavelength OTDR and a Wavelength-Dependent Reflective Element

A method of distinguishing a wavelength-dependent reflective element (HRD) from wavelength-independent events in an optical network, the reflective element (HRD) being highly-reflective at a first predetermined wavelength (λ1) and significantly less reflective at least one other predetermined wavelength (λ2), comprising the steps of: connecting the wavelength-dependent reflective element (HRD) to said optical path at a first position, and, using an optical time domain reflectometer (22) connected to said optical path at a position remote from said reflective element, launching into said optical path light at said first wavelength (λ1) and at said second wavelength (λ2), detecting corresponding backreflected light from said optical paths and obtaining therefrom first and second OTDR traces (OTDR-λ1, OTDR-λ2) corresponding to said first (λ1) and second (λ2) wavelengths, respectively, of detected backreflected light as a function of optical distance from said point; comparing the first and second OTDR traces to distinguish a peak corresponding to said wavelength-dependent reflective element from peaks corresponding to said wavelength-independent reflective events; and outputting at least one parameter value of the distinguished peak as a measure of a parameter of said wavelength-dependent reflective element.
Owner:EXFO

Coherent optical transceiver with programmable application modes

An optical communication system provides coherent optical transmission for metro applications. Relative to conventional solutions, the optical communication system can be implemented with reduced cost and can operate with reduced power consumption, while maintaining high data rate performance (e.g., 100 G). Furthermore, a programmable transceiver enables compatibility with a range of different types of optical networks having varying performance and power tradeoffs. In one embodiment, the optical communication system uses 100 Gb / s dual-polarization 16-point quadrature amplitude modulation (DP-16QAM) with non-linear pre-compensation of Indium Phosphide (InP) optics for low power consumption.
Owner:MARVELL ASIA PTE LTD

Multi-channel differentially encoded phase shift keyed receivers

An optical, multi-channel, Differential Phase Shift Keying (DPSK) receiver demodulates multiple Wavelength Division Multiplexed (WDM) channels using at least one interferometer. This distributes expense of the interferometer(s) over all channels of an optical signal, allowing for deployment of cost-effective, scalable, wideband, WDM DPSK systems. For example, for an 80 channel WDM link, the receiver uses a single interferometer instead of eighty interferometers and associated stabilization hardware, dramatically reducing size, weight, power, and cost. The receiver is architecturally compatible with existing interferometer technologies so previous development and qualification efforts can be leveraged. This allows for expedited technology insertion into existing optical communications networks, including terrestrial and space-based optical networks.
Owner:MASSACHUSETTS INST OF TECH

Moving coil motor and implementations in MEMS based optical switches

A moving coil motor has an axisymmetric magnetic field applied to the drive coils on the movable member of the motor. The movable member is suspended by springs. The moving coil motor may be configured in a MEMS format, with the movable member and its suspension springs fabricated from a mono-crystalline substance to improve structural integrity. MEMS based moving coil motors may be configured in an array. Sensors are provided to detect the relative spatial positions of the movable member. The movable member may include several tiers. In one application, the moving coil motor may be configured to support and drive a mirror surface on the movable member to form a galvanometer, optical switch, or other optical component. Singular moving coil motors may be configured in an optical cavity to facilitate the tuning of specific wavelengths while a number of moving coil motors may be configured to form an array of optical switches to facilitate switching in a multi-channel optical network.
Owner:INTEGRATED MICROMACHINES

All-optical regenerator and optical network incorporating same

ActiveUS20080085125A1Increase in sophistication and complexityImprove distortionElectromagnetic transmissionAudio power amplifierSignal quality
The present invention provides an optical networking device for re-amplifying, re-shaping, and re-timing an optical signal, as well as providing distortion compensation and performance monitoring of the optical signal. The optical networking device includes an all-optical regenerator device for one or more of re-amplifying, re-shaping, and re-timing the optical signal; a distortion compensator device for compensating for distortion associated with the optical signal; and a quality-of-signal monitoring device for measuring the quality of the optical signal. Preferably, the all-optical regenerator device, the distortion compensator device, and the quality-of-signal monitoring device are disposed within a single module. The quality-of-signal monitoring device measures the optical signal subsequent to distortion compensation. Alternatively, the quality-of-signal monitoring device measures the optical signal subsequent to distortion compensation and all-optical regeneration. In various embodiments, the quality-of-signal monitoring device provides feedback to the distortion compensator device, a distortion compensator device disposed along a line system, one or more of an optical amplifier and a distortion compensator device disposed along the line system, and a transmitter device disposed along the line system.
Owner:CIENA

System and method for propagating satellite TV-band, cable TV-band, and data signals over an optical network

An optical network can include a data service hub, a laser transceiver node, and a subscriber optical interface. The data service hub can comprise a satellite antenna and a RF receiver for receiving satellite TV-band electrical signals. These electrical signals can be converted into the optical domain and then propagated over the optical network through optical waveguides to the subscriber optical interface. The subscriber optical interface can comprise an optical filter and a satellite analog optical receiver. The optical filter can separate the satellite TV-band optical signals having a first optical wavelength from other optical signals such as cable TV-band optical signals with a second optical wavelength and data optical signals with a third optical wavelength. The satellite analog optical receiver can further comprise various mechanisms for controlling access to the satellite TV-band signals.
Owner:ENABLENCE USA FTTX NETWORKS

System and methods for data compression and nonuniform quantizers

An optical network includes a transmitting portion configured to (i) encode an input digitized sequence of data samples into a quantized sequence of data samples having a first number of digits per sample, (ii) map the quantized sequence of data samples into a compressed sequence of data samples having a second number of digits per sample, the second number being lower than the first number, and (iii) modulate the compressed sequence of data samples and transmit the modulated sequence over a digital optical link. The optical network further includes a receiving portion configured to (i) receive and demodulate the modulated sequence from the digital optical link, (ii) map the demodulated sequence from the second number of digits per sample into a decompressed sequence having the first number of digits per sample, and (iii) decode the decompressed sequence.
Owner:CABLE TELEVISION LAB

Method and device for detecting optical power of passive optical network (PON) and PON system

The embodiment of the invention discloses a device for detecting optical power of a passive optical network (PON). The device comprises a receiving module, a detection module and a controller, wherein the receiving module is used for receiving optical signals sent by an optical network unit (ONU); the detection module comprises a current mirror received signal strength indication (RSSI) detection branch and a logarithmic amplifier RSSI detection branch; the current mirror RSSI detection branch and the logarithmic amplifier RSSI detection branch are respectively coupled with the receiving module and used for carrying out RSSI measurement on the optical signals received by the receiving module in accordance with received RSSI function trigger signals; and the controller is coupled with the detection module and used for outputting the RSSI function trigger signals to the detection module, selectively receiving RSSI measurement results which are output by the RSSI detection branch and correspond to the luminous intensity of the optical signals sent by the ONU according to the selection control signals provided by a selection control signal generating module, and calculating the optical power information of the optical signals in accordance with the RSSI measurement results. The embodiment of the invention also discloses a method for detecting optical power of a PON and a PON system.
Owner:HUAWEI TECH CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products