Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

187results about How to "Available bandwidth" patented technology

Wireless local area network (wlan) as a public land mobile network for wlan/telecommunications system interworking

A telecommunications system includes a Public Land Mobile Network for providing wireless service to users and a wireless local area network functioning outside the said PLMN as a separate PLMN. An inter-PLMN backbone interfaces the WLAN to the PLMN, and an interworking function is coupled to the WLAN to provide seamless interactions between the PLMN and the WLAN to increase available service bandwidth provided for users of the PLMN.
Owner:THOMSON LICENSING SA

Bandwidth efficient source tracing (BEST) routing protocol for wireless networks

A bandwidth efficient routing protocol for wireless ad-hoc networks. This protocol can be used in ad-hoc networks because it considerably reduces control overhead, thus increasing available bandwidth and conserving power at mobile stations. It also gives very good results in terms of the throughput seen by the user. The protocol is a table-driven distance-vector routing protocol that uses the same constraints used in on-demand routing protocols, i.e., paths are used as long as they are valid and updates are only sent when a path becomes invalid. The paths used by neighbors are maintained and this allows the design of a distance-vector protocol with non-optimum routing and event-driven updates, resulting in reduced control overhead.
Owner:RGT UNIV OF CALIFORNIA

Dynamic wireless network

ActiveUS7269174B2Maximize signal strengthOptimize bandwidthNetwork topologiesData switching by path configurationMedia access controlIp address
A Dynamically Reconfigurable Dynamic Wireless Network for connecting a local area network (“LAN”) to wireless Mobile Stations. Backbone Access Points (“Backbone APs”) are physically connected to the LAN. Levels of Wireless Access Points (“Wireless APs”) are daisy-chained together and connected to the Backbone AP, providing an extended area of network coverage. Mobile stations are connected to either Backbone APs or Wireless APs. Dynamic Reconfiguration prevents single point failures. Each AP contains a router, Address Resolution Protocol (“ARP”) cache, and Distributed Routing Table (“DR Table”). The DR Table maintains the Media Access Control (“MAC”) address and the Internet Protocol (“IP”) address of each AP below it in the Distributed Routing Tree. Additionally, each DR Table also maintains the IP address for the device each AP is connected. The Distributed Routing Tree is dynamically reconfigured to minimize transmission hops or to maximize signal strength between Mobile Stations and the LAN.
Owner:MODULAR MINING SYSTEMS

Digital video signal encoder and encoding method

A motion video signal encoder maximizes image quality without exceeding transmission bandwidth available to carry the encoded motion video signal by comparing encoded frames of the motion video signal to a desired size of frame. If the size of encoded frames differ from the desired size, quantization is adjusted to produce encoded frames closer in size to the desired size. In addition, a cumulative bandwidth balance records an accumulated amount of available bandwidth. The cumulative bandwidth balance is adjusted as time elapses to add to the available bandwidth and as each frame is encoded to thereby consume bandwidth. If the cumulative bandwidth balance deviates from a predetermined range, quantization is adjusted as needed to either improve image quality to more completely consume available bandwidth or to reduce image quality to thereby consume less bandwidth. Rapid changes in the amount of change or motion in the motion video signal are detected by comparing the amount of change between two consecutive frames and the amount of change between the next two consecutive frames. Quantization is precompensated according to the measured rapid change. Conditional replenishment is improved by dividing macroblocks into quadrants and measuring differences between corresponding quadrants of macroblocks. As a result, sensitivity to changes along edges and corners of macroblocks is increased. In addition, sensitivity to changes in a particular macroblock is increased when an adjacent macroblock contains sufficient change to be encoded and therefore not a candidate for conditional replenishment.
Owner:MICROSOFT TECH LICENSING LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products