Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

480 results about "Cell counting" patented technology

Cell counting is any of various methods for the counting or similar quantification of cells in the life sciences, including medical diagnosis and treatment. It is an important subset of cytometry, with applications in research and clinical practice. For example, the complete blood count can help a physician to determine why a patient feels unwell and what to do to help. Cell counts within liquid media (such as blood, plasma, lymph, or laboratory rinsate) are usually expressed as a number of cells per unit of volume, thus expressing a concentration (for example, 5,000 cells per milliliter).

Microscale sorting cytometer

The present invention provides a device and methods of use thereof in microscale cell sorting. This invention provides sorting cytometers, which trap individual cells within vessels following exposure to dielectrophoresis, allow for the assaying of trapped cells, such that a population is identified whose isolation is desired, and their isolation.
Owner:MASSACHUSETTS INST OF TECH

Systems and methods for counting cells and biomolecules

The present invention generally relates to systems and methods for counting biomolecules or cells. In certain embodiments, the invention provides a cell counting or biomolecule counting system including: a covered chamber having a known height and configured to hold a suspension of biomolecules or cells in a sample; at least one fluorescent light source connected to at least one fluorescent light beam narrowing device; a bright-field light source connected to a bright-field light beam narrowing device; a microscope objective; a detection device; a fluorescent filter assembly to allow only excitation light to illuminate the sample and allow only emission light from the sample to be imaged by the detection device; and a movable light shutter to block bright-field light during fluorescent detection.
Owner:NEXCELOM BIOSCIENCE LLC

Methods and algorithms for cell enumeration in a low-cost cytometer

The enumeration of cells in fluids by flow cytometry is widely used across many disciplines such as assessment of leukocyte subsets in different bodily fluids or of bacterial contamination in environmental samples, food products and bodily fluids. For many applications the cost, size and complexity of the instruments prevents wider use, for example, CD4 analysis in HIV monitoring in resource-poor countries. The novel device, methods and algorithms disclosed herein largely overcome these limitations. Briefly, all cells in a biological sample are fluorescently labeled, but only the target cells are also magnetically labeled. In addition, non-magnetically labeled cells are imaged for viability in a modified slide configuration. The labeled sample, in a chamber or cuvet, is placed between two wedge-shaped magnets to selectively move the magnetically labeled cells to the observation surface of the cuvet. An LED illuminates the cells and a CCD camera captures the images of the fluorescent light emitted by the target cells. Image analysis performed with a novel algorithm provides a count of the cells on the surface that can be related to the target cell concentration of the original sample. The compact cytometer system provides a rugged, affordable and easy-to-use technique, which can be used in remote locations.
Owner:UNIVERSITY OF TWENTE

Method for separating and extracting stem cells from placenta, umbilical cord or adipose tissue

The invention relates to a method for separating and extracting stem cells from a placenta, umbilical cord or adipose tissue, which comprises the following process steps: firstly mixing the placenta, umbilical cord or adipose tissue and a cell maintenance fluid according to the proportion by weight of 2.5-4:1, putting the mixture into a tissue crushing barrel, adding collagenase after crushing, uniformly mixing, hatching at the temperature of 37 DEG C, filtering, adding a precipitator, sucking a supernatant fluid after settling, centrifuging, removing the supernatant fluid, adding concentrated cells into a liquid of diatrizoate sodium-ficoll 400#, then centrifuging, collecting 10-15 ml of intermediate cell layer, washing with the cell maintenance fluid, counting the collected cells, and providing the cells for clinical use when the cell survival ratio is more than or equal to 95 percent. The invention not only realizes the separation and the extraction of all stem cells from the placenta, umbilical cord or adipose tissue, but also realizes industrialized production, and enables doctors to conveniently, safely and canonically obtain the adult stem cells in clinic and use the adult stem cells for treating the diseases of patients as using medicaments, thereby solving the bottleneck problem of difficult obtainment of adult stem cells in clinic and popularizing a cell treatment technology.
Owner:NINGXIA ZHONGLIANDA BIOPHYSICS

Microfluidic device

The present disclosure relates to microfluidic devices adapted for facilitating cytometry analysis of particles flowing therethrough. In certain embodiments, the microfluidic devices have onboard sterilization capabilities. In other embodiments, microfluidic devices have integral collection bags and methods for keeping the microfluidic channels clean.
Owner:SONY CORP +1

Methods and algorithms for cell enumeration in a low-cost cytometer

The enumeration of cells in fluids by flow cytometry is widely used across many disciplines such as assessment of leukocyte subsets in different bodily fluids or of bacterial contamination in environmental samples, food products and bodily fluids. For many applications the cost, size and complexity of the instruments prevents wider use, for example, CD4 analysis in HIV monitoring in resource-poor countries. The novel device, methods and algorithms disclosed herein largely overcome these limitations. Briefly, all cells in a biological sample are fluorescently labeled, but only the target cells are also magnetically labeled. In addition, non-magnetically labeled cells are imaged for viability in a modified slide configuration. The labeled sample, in a chamber or cuvet, is placed between two wedge-shaped magnets to selectively move the magnetically labeled cells to the observation surface of the cuvet. An LED illuminates the cells and a CCD camera captures the images of the fluorescent light emitted by the target cells. Image analysis performed with a novel algorithm provides a count of the cells on the surface that can be related to the target cell concentration of the original sample. The compact cytometer system provides a rugged, affordable and easy-to-use technique, which can be used in remote locations.
Owner:UNIVERSITY OF TWENTE

Collection systems for cytometer sorting of sperm

Improved flow cytometer system particularly adapted to use for sex-selected sperm sorting include enhanced sheath fluid and other strategies which minimize stress on the sperm cells, including a 2.9 percent sodium citrate sheath solution for bovine species and a hepes bovine gamete media for equine species. Improved collection systems and techniques for the process are described so that commercial applications of sperms samples as well as the resulting animals may be achieved.
Owner:XY

Methods and Algorithms For Cell Enumeration in a Low-Cost Cytometer

The enumeration of cells in fluids by flow cytometry is widely used across many disciplines such as assessment of leukocyte subsets in different bodily fluids or of bacterial contamination in environmental samples, food products and bodily fluids. For many applications the cost, size and complexity of the instruments prevents wider use, for example, CD4 analysis in HIV monitoring in resource-poor countries. The novel device, methods and algorithms disclosed herein largely overcome these limitations. Briefly, all cells in a biological sample are fluorescently labeled, but only the target cells are also magnetically labeled. In addition, non-magnetically labeled cells are imaged for viability in a modified slide configuration. The labeled sample, in a chamber or cuvet, is placed between two wedge-shaped magnets to selectively move the magnetically labeled cells to the observation surface of the cuvet. An LED illuminates the cells and a CCD camera captures the images of the fluorescent light emitted by the target cells. Image analysis performed with a novel algorithm provides a count of the cells on the surface that can be related to the target cell concentration of the original sample. The compact cytometer system provides a rugged, affordable and easy-to-use technique, which can be used in remote locations.
Owner:VERIDEX LCC

Apparatus and method for the measurement of cells in biological samples

An apparatus and method for concentrating and measuring low levels of cells in biological samples. The apparatus, or concentration device, consists of two chambers with an optically level collection membrane intermediating between the chambers. The collection membrane filters the biological sample, trapping cellular elements of interest. A vacuum may be attached to the device to assist in filtration. The surface area of the collection membrane matches the view field of a standard imaging system and the device can be mounted on a standard microscope stage. All the cells in the sample volume are collected onto the membrane. The view field provides a fixed volumetric area for cell counting. Since the volume of sample tested is known, the total number of cells in the original sample may be calculated. The sample reservoir of the concentration device may also be used for sample preparation. The concentration device is fully-contained; therefore, the investigator does not have to handle the sample once it is placed in the sample reservoir.
Owner:INOVX

Cell counting method based on image identification

ActiveCN101949819ARealize visualizationRealize visualization and truly realize the preservation of target cell entitiesIndividual particle analysisImaging processingDigital image
The invention discloses a cell counting method based on image identification. In the method of the invention, by means of computer vision, solid section information is converted into digital image information by a sensor, and the cell counting is finished by image processing. The method of the invention has the excellent expandability and generality, can detect various cells except immunocyte, and can classify the cells in accordance with cell characteristics and the counting accuracy rate is more than 98%.
Owner:北京优纳科技有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products