Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

263results about How to "Small mass" patented technology

Mass flowmeter

A mass flowmeter is provided which operates on the Coriolis principle, having (1) at least four measurement tubes which can oscillate and through which a medium can flow, (2) at least one oscillation generator for excitation of the oscillations of the measurement tube, and (3) at least one oscillation sensor for detection of the excited oscillations of the measurement tubes. The measurement tubes are preferably arranged closely in parallel such that the flow cross section covered by the measurement tubes covers as small an area as possible. The use of four or more compactly arranged measurement tubes advantageously allows for the measurement of a high mass flow rate with measurement tubes having a relatively small cross section and length, resulting in a mass flowmeter having compact length and width dimensions, and which requires only a relatively low energy oscillation generator for excitation of the oscillations of the measurement tubes.
Owner:KRONE GMBH

Linear motor with permanent-magnetic self-holding

A linear motor for optical systems, for example, endoscopes, is described. The motor has a stator with a magnetic guiding member and two adjacently disposed coils which are energized in opposite directions. Furthermore permanent magnets polarized in opposite directions and in the axial direction are provided on both sides of the pair of coils. The armature of the motor comprises a permanent magnet which is polarized in the opposite direction to the permanent magnet of the stator and is connected to a pole piece at each end. The pole pieces are arranged so that in the rest position each pole piece lies at the centre of one of the coils. By applying current to the coil, the armature can be displaced from a rest position in the longitudinal direction.
Owner:KARL STORZ GMBH & CO KG

Network streaming of a single data stream simultaneously over multiple physical interfaces

InactiveUS20100287296A1Reduce expect difference in arrival timePrevent oscillationMultiple digital computer combinationsTransmissionPhysical interfaceArrival time
Sending a data stream from a sending endpoint to a receiving endpoint, wherein both of the sending endpoint and the receiving endpoint each have multiple physical interfaces connecting the sending endpoint and the receiving endpoint to multiple networks, respectively, is provided. The data stream is split into a series of data packets and sent over the multiple physical interfaces. A next available data packet of the series is sent over a fastest one of the multiple physical interfaces. A data packet from further back in the series is extracted in accordance with a determined expected difference in arrival time, and sent on a corresponding slower one of the multiple physical interfaces. The next available data packet is sent from the sending endpoint nearly simultaneously as the extracted data packet is sent from the sending endpoint.
Owner:CANON KK

Ophthalmic and otorhinolaryngological device materials

Disclosed are soft, high refractive index, acrylic device materials. The materials contain a hydrophilic side-chain macromer for glistening resistance.
Owner:ALCON INC

Micromachined optical switching devices

Various 3-port and 4-port micromachined optomechanical matrix switches are disclosed herein. In accordance with one aspect of the invention there is provided an optomechanical matrix switch including a substrate and a first plurality of optomechanical switching cells coupled thereto. Each of the first plurality of optomechanical switching cells is arranged to be in optical alignment with a first input port. A second plurality of optomechanical switching cells is also coupled to the substrate, each of the second plurality of optomechanical switching cells being in optical alignment with a second input port. In another aspect of the present invention an optomechanical matrix switch is provided which includes a substrate and a first plurality of optomechanical switching cells coupled thereto. Each of the first plurality of optomechanical switching cells is placed in optical alignment with one of a corresponding first plurality of input ports and with one of a corresponding first plurality of output ports. The matrix switch further includes a second plurality of optomechanical switching cells coupled to the substrate. Each of the second plurality of optomechanical switching cells is placed in optical alignment with one of a corresponding second plurality input ports and with one of a corresponding second plurality of output ports.
Owner:CROSSFIBER +1

Method and arrangement for cleaning optical surfaces in plasma-based radiation sources

The invention is directed to a method and an arrangement for cleaning optical surfaces of reflection optics which are arranged in a plasma-based radiation source or exposure device arranged downstream and contaminated by debris particles emitted by a hot plasma of the radiation source. It is the object of the invention to find a novel possibility for in-situ cleaning of the optical surfaces of reflection optics which are contaminated by debris in plasma-based radiation sources so as to allow an integrated generation of known gas radicals and the isotropic distribution thereof on the contaminated optical surfaces. According to the invention, this object is met in that the gas radicals are generated by dielectrically impeded discharge between two surface electrodes along the entire optical surface. The gas radicals are generated almost exclusively by electron transfer on at least one barrier layer which covers the entire surface of at least one of the surface electrodes, an AC voltage in the Hz to kHz range is applied to the surface electrodes for periodically eliminating the charge polarization at the barrier layer so that a cold plasma is generated continuously and the deposited debris particles are removed as gaseous reaction products by the gas flow guided over the optical surface.
Owner:USHIO DENKI KK
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products