Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

98results about How to "Minimal variation" patented technology

Electronic image sensor

An electronic imaging sensor. The sensor includes an array of photo-sensing pixel elements for producing image frames. Each pixel element defines a photo-sensing region and includes a charge collecting element for collecting electrical charges produced in the photo-sensing region, and a charge storage element for the storage of the collected charges. The sensor also includes charge sensing elements for sensing the collected charges, and charge-to-signal conversion elements. The sensor also includes timing elements for controlling the pixel circuits to produce image frames at a predetermined normal frame rate based on a master clock signal (such as 12 MHz or 10 MHz). This predetermined normal frame rate which may be a video rate (such as about 30 frames per second or 25 frames per second) establishes a normal maximum per frame exposure time. The sensor includes circuits (based on prior art techniques) for adjusting the per frame exposure time (normally based on ambient light levels) and novel frame rate adjusting features for reducing the frame rate below the predetermined normal frame rate, without changing the master clock signal, to permit per frame exposure times above the normal maximum exposure time. This permits good exposures even in very low light levels. (There is an obvious compromise of lowering of the frame rate in conditions of very low light levels, but in most cases this is preferable to inadequate exposure.) These adjustments can be automatic or manual.
Owner:E PHOCOS

Intracavity sum-frequency mixing laser

ActiveUS20060045161A1High efficiencyAdequate level of efficiencyActive medium shape and constructionOptical pathResonator
Provided is a diode-pumped solid-state laser adapted for an intracavity sum-frequency mixing for generating a laser radiation of a visible wavelength range by performing a sum-frequency mixing of two laser inputs in a laser resonant cavity. A pair of laser resonators of two different wavelengths are formed along a common optical path and an intracavity sum-frequency mixing is conducted so as to obtain a laser radiation at a sum-frequency wavelength by placing a nonlinear optical crystal on this common optical path. By suitably selecting the properties of the reflective surfaces that form the laser resonators, a laser radiation of a relatively short wavelength range can be obtained even though the wavelength of the pumping laser beam is relatively long, and an extremely high conversion efficiency can be achieved.
Owner:KYOCERA SOC CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products