Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1418results about How to "Improve battery performance" patented technology

Li/air non-aqueous batteries

Non-aqueous alkali metal (e.g., Li) / oxygen battery cells constructed with a protected anode that minimizes anode degradation and maximizes cathode performance by enabling the use of cathode performance enhancing solvents in the catholyte have negligible self-discharge and high deliverable capacity. In particular, protected lithium-oxygen batteries with non-aqueous catholytes have this improved performance.
Owner:POLYPLUS BATTERY CO INC

Ionically conductive composites for protection of active metal anodes

Disclosed are ionically conductive composites for protection of active metal anodes and methods for their fabrication. The composites may be incorporated in active metal negative electrode (anode) structures and battery cells. In accordance with the invention, the properties of different ionic conductors are combined in a composite material that has the desired properties of high overall ionic conductivity and chemical stability towards the anode, the cathode and ambient conditions encountered in battery manufacturing. The composite is capable of protecting an active metal anode from deleterious reaction with other battery components or ambient conditions while providing a high level of ionic conductivity to facilitate manufacture and / or enhance performance of a battery cell in which the composite is incorporated.
Owner:POLYPLUS BATTERY CO INC

Mobile network optimized method for keeping an application IP connection always on

A system and method of maintaining an always-on application client communication is provided. An application programming interface implemented on a device hosting an always-on application client determines if network-based keep-alive functionality exists in a network where the device operates. If network-based keep-alive functionality exists, a network element is instructed to transmit keep-alive messages to the application server on behalf of the device. The network element can be implemented in or as a variety of existing network elements, e.g., as a GPRS gateway serving node or a standalone keep-alive network element. Alternatively, an application server communicatively connected to the always-on application client may query whether network-based keep-alive functionality exists. If network-based keep-alive functionality exists, the application server negotiates with the always-on application client to determine an application-specific mechanism for implementing the network-based keep-alive functionality. When an application server queries for network-based keep-alive functionality, an application programming interface need not be utilized.
Owner:NOKIA TECHNOLOGLES OY

Lithium secondary battery

In order to enhance charge and discharge efficiency and to improve cycle characteristics by increasing a facing area between a positive electrode active material and a negative electrode active material, in a negative electrode for lithium secondary battery having a current collector and an active material layer carried on the current collector, the active material layer includes a plurality of columnar particles. The columnar particles include an element of silicon, and are tilted toward the normal direction of the current collector. Angle θ formed between the columnar particles and the normal direction of the current collector is preferably 10°≦θ<90°.
Owner:PANASONIC CORP

Phosphonate additives for nonaqueous electrolyte in rechargeable cells

A lithium ion electrochemical cell having high charge / discharge capacity, long cycle life and exhibiting a reduced first cycle irreversible capacity, is described. The stated benefits are realized by the addition of at least one phosphonate additive to an electrolyte comprising an alkali metal salt dissolved in a solvent mixture that includes ethylene carbonate, dimethyl carbonate, ethylmethyl carbonate and diethyl carbonate. The preferred additive is an alkyl phosphonate compound.
Owner:WILSON GREATBATCH LTD

Chemical-Free Production of Graphene-Encapsulated Electrode Active Material Particles for Battery Applications

Provided is a simple, fast, scalable, and environmentally benign method of producing graphene-embraced or encapsulated particles of a battery electrode active material directly from a graphitic material, the method comprising: a) mixing graphitic material particles and multiple particles of a solid electrode active material to form a mixture in an impacting chamber of an energy impacting apparatus, wherein the graphitic material has never been intercalated, oxidized, or exfoliated and the chamber contains therein no previously produced graphene sheets and no ball-milling media; b) operating the energy impacting apparatus with a frequency and an intensity for a length of time sufficient for transferring graphene sheets from the graphitic material to surfaces of electrode active material particles to produce graphene-embraced electrode active material particles; and c) recovering the particles from the impacting chamber. Also provided is a mass of the graphene-embraced particles, electrode containing such particles, and battery containing this electrode.
Owner:GLOBAL GRAPHENE GRP INC

Layered Lithium Nickel Manganese Cobalt Composite Oxide Powder For Material Of Positive Electrode Of Lithium Secondary Battery, Process For Producing The Same, Positive Electrode Of Lithium Secondary Battery Therefrom, And Lithium Secondary Battery

A powder of a layered lithium-nickel-manganese-cobalt composite oxide for use as a positive-electrode material for lithium secondary battery is provided which, when used as a positive-electrode material for lithium secondary battery, enables a cost reduction and higher safety to be reconciled with improved battery performances. The powder of a layered lithium-nickel-manganese-cobalt composite oxide for use as a positive-electrode material for lithium secondary battery is composed of secondary particles formed by the aggregation of primary particles. It has a composition represented by the following formula (I), has a volume resistivity of 5×105 Ω·cm or lower in the state of being compacted at a pressure of 40 MPa, and has a value of C / S, wherein C is the concentration of carbon contained therein (% by weight) and S is the BET specific surface area thereof (m2 / g), of 0.025 or smaller. The powder has been regulated so as to have a volume resistivity not higher than the specified value and a considerably reduced carbon content while having a composition in a limited range, whereby a cost reduction and higher safety can be reconciled with improved battery performances. Li1+zNixMnyCo1−x−yOδ  (I) (0<z≦0.91, 0.1≦x≦0.55, 0.20≦y≦0.90, 0.50≦x+y≦1, 1.9≦δ≦3)
Owner:MITSUBISHI CHEM CORP

Phosphate additives for nonaqueous electrolyte rechargeable electrochemical cells

A lithium ion electrochemical cell having high charge / discharge capacity, long cycle life and exhibiting a reduced first cycle irreversible capacity, is described. The stated benefits are realized by the addition of at least one phosphate additive to an electrolyte comprising an alkali metal salt dissolved in a solvent mixture that includes ethylene carbonate, dimethyl carbonate, ethylmethyl carbonate and diethyl carbonate. The preferred additive is an alkyl phosphate compound.
Owner:WILSON GREATBATCH LTD

Lithium-iron disulfide cylindrical cell with modified positive electrode

A primary electrochemical cell, and a method for making the same, relies upon a jellyroll electrode with a positive electrode material deposited on a conductive carrier having partially uncoated portion wherein electrochemically active material is coated on only one side of the carrier in order to achieve superior performance in comparison to a cell having no such uncoated portion. The partially uncoated portion is oriented along a longitudinal axis of the jellyroll. The positive electrode material is preferably iron disulfide, whereas the negative electrode comprises lithium or a lithium alloy.
Owner:EVEREADY BATTERY CO INC

Nitrate additives for nonaqueous electrolyte rechargeable cells

A lithium ion electrochemical cell having high charge / discharge capacity, long cycle life and exhibiting a reduced first cycle irreversible capacity, is described. The stated benefits are realized by the addition of at least one nitrate additive to an electrolyte comprising an alkali metal salt dissolved in a solvent mixture that includes ethylene carbonate, dimethyl carbonate, ethylmethyl carbonate and diethyl carbonate. The preferred additive is an organic alkyl nitrate compound.
Owner:WILSON GREATBATCH LTD

Method for Forming Light Absorption Layer of Cis Type Thin-Film Solar Cell

A simple device is used to make the temperature in an apparatus even and improve the state of being in contact with reactant gases, selenium, and sulfur.A fan 3 as a device for atmosphere homogenization is disposed in an apparatus, and the work is disposed in the manner which enables a reactant gas to circulate smoothly. Namely, flat platy works 2 are disposed apart from each other at a certain distance parallel to the direction of the major axis of the apparatus while keeping the plates vertical so that the apparatus has passages within the group of works and has gas passages over and under the works and on both sides thereof. Thus, each work is apt to come into contact with the reactant gases in the apparatus and the temperature in the apparatus is even. The state of being in contact with the reactant gases, selenium, and sulfur is improved.
Owner:SHOWA SHELL SEKIYU KK

Method for preparing cross-linked ceramic-coated separator containing ionic polymer, ceramic-coated separator prepared by the method, and lithium secondary battery using the same

The present invention provides method for preparing a cross-linked ceramic-coated separator containing an ionic polymer, a ceramic-coated separator prepared by the method, and a lithium secondary battery using the same. According to preferred methods for preparing a cross-linked ceramic-coated separator, a coating material containing ceramic particles for improving thermal and mechanical characteristics, a functional inorganic compound for improving cycle characteristics and high rate characteristics of a battery, and an ionic polymer for bonding the ceramic particles and the functional inorganic compound on a porous membrane substrate is coated on the porous membrane substrate and subjected to chemical cross-linking.
Owner:HYUNDAI MOTOR CO LTD +1

Integral bi-layer separator-electrode construction for lithium-ion batteries

A porous bi-layer separator composed of a first layer with a contacting array of non-conducting particles overlaid with a second layer of a microporous polymer layer, may be fabricated on the electrode surface of the anode of a lithium-ion battery to form an integral electrode-separator construction. The bi-layer separator may prevent development of a direct electronic path between the anode and cathode of the battery while accommodating electrolyte solution and enabling passage of lithium ions. Such an integral separator should be mechanically robust and tolerant of elevated temperatures. Exemplary bi-layer separators may be fabricated by sequential deposition of solvent-containing slurries and polymer solutions with subsequent controlled evaporation of solvent. The elevated temperature performance of lithium-ion battery cells incorporating such integral electrode-bi-layer separators was demonstrated to exceed the performance of similar cells using commercial and experimental single layer polymer separators.
Owner:GM GLOBAL TECH OPERATIONS LLC

Induction of exon skipping in eukaryotic cells

Described is a method for at least in part decreasing the production of an aberrant protein in a cell, the cell comprising pre-mRNA comprising exons coding for the protein, by inducing so-called exon skipping in the cell. Exon-skipping results in mature mRNA that does not contain the skipped exon, which leads to an altered product of the exon codes for amino acids. Exon skipping is performed by providing a cell with an agent capable of specifically inhibiting an exon inclusion signal, for instance, an exon recognition sequence, of the exon. The exon inclusion signal can be interfered with by a nucleic acid comprising complementarity to a part of the exon. The nucleic acid, which is also herewith provided, can be used for the preparation of a medicament, for instance, for the treatment of an inherited disease.
Owner:ACADEMISCH ZIEKENHUIS BIJ DE UNIV VAN AMSTERDAM ACADEMISCH MEDISCH CENT

Enhanced Electrode Composition for Li ion Battery

Carbon nanotube-based compositions and methods of making an electrode for a Li ion battery are disclosed. It is an objective of the instant invention to disclose a composition for preparing an electrode of a lithium ion battery with incorporation of carbon nanotubes with more active material by having less conductive filler loading and less binder loading such that battery performance is enhanced.
Owner:JIANGSU CNANO TECHNOLOGY CO LTD

Electrochemical cell with positive container

An electrochemical cell, particularly an electrochemical cell having a container with a positive polarity. In one embodiment, the cell is a primary cell that includes an electrode assembly having a lithium negative electrode and a positive electrode, preferably comprising iron disulfide. The cell is provided with a spiral wound electrode assembly with a portion of the positive electrode contacting the container. The positive electrode current collector contacts the container in one embodiment. The negative electrode includes an electrically conductive member that electrically contacts a cover of the cell and provides the cover with a negative polarity. In a preferred embodiment, the electrically conductive member makes pressure contact with a portion of the cell cover. A method of manufacturing such a cell is also provided.
Owner:EVEREADY BATTERY CO INC

Nitrite additives for nonaqueous electrolyte rechargeable electrochemical cells

A lithium ion electrochemical cell having high charge / discharge capacity, long cycle life and exhibiting a reduced first cycle irreversible capacity, is described. The stated benefits are realized by the addition of at least one nitrite additive to an electrolyte comprising an alkali metal salt dissolved in a solvent mixture that includes ethylene carbonate, dimethyl carbonate, ethylmethyl carbonate and diethyl carbonate. The preferred additive is an alkyl nitrite compound.
Owner:WILSON GREATBATCH LTD

Electrochemical device component with protected alkali metal electrode

Disclosed are ionically conductive composites for protection of active metal anodes and methods for their fabrication. The composites may be incorporated in active metal negative electrode (anode) structures and battery cells. In accordance with the invention, the properties of different ionic conductors are combined in a composite material that has the desired properties of high overall ionic conductivity and chemical stability towards the anode, the cathode and ambient conditions encountered in battery manufacturing. The composite is capable of protecting an active metal anode from deleterious reaction with other battery components or ambient conditions while providing a high level of ionic conductivity to facilitate manufacture and / or enhance performance of a battery cell in which the composite is incorporated.
Owner:POLYPLUS BATTERY CO INC

Ionically conductive composites for protection of active metal anodes

Disclosed are ionically conductive composites for protection of active metal anodes and methods for their fabrication. The composites may be incorporated in active metal negative electrode (anode) structures and battery cells. In accordance with the invention, the properties of different ionic conductors are combined in a composite material that has the desired properties of high overall ionic conductivity and chemical stability towards the anode, the cathode and ambient conditions encountered in battery manufacturing. The composite is capable of protecting an active metal anode from deleterious reaction with other battery components or ambient conditions while providing a high level of ionic conductivity to facilitate manufacture and / or enhance performance of a battery cell in which the composite is incorporated.
Owner:POLYPLUS BATTERY CO INC

Complex membrane for electrochemical device, manufacturing method and electrochemical device having the same

A complex membrane for an electrochemical device such as a lithium secondary battery, its manufacturing method, and an electrochemical device having the complex membrane are disclosed. The complex membrane includes a micro-porous polyolefin membrane, and a web-phase porous membrane united to at least one side of the micro-porous polyolefin membrane and composed of nano-fibers. Since the complex membrane is capable of absorbing an electrolyte uniformly, it greatly improves performance of a battery when being used for an electrochemical device. In addition, owing to excellent mechanical strength and good binding capacity to an electrode, it helps to increase a process rate for manufacturing the battery.
Owner:NANOPHIL

Nonaqueous electrolyte lithium secondary cell

A nonaqueous electrolyte lithium secondary cell comprising a positive electrode (1), a negative electrode (2) and a nonaqueous electrolyte containing a lithium salt is characterized by that the nonaqueous electrolyte contains a room temperature molten salt as a main component, a material wherein a working potential of the negative electrode (2) is nobler by above 1V than a potential of a metallic lithium is used for a negative active material of the negative electrode. This nonaqueous electrolyte lithium secondary cell has excellent safety and cell performance.
Owner:GS YUASA INT LTD +1

Nonaqueous electrolyte solution secondary battery separator and nonaqueous electrolyte solution secondary battery using the same

An object of this invention is to improve battery performance such as a rate capability of a nonaqueous electrolyte solution secondary battery using a separator constituting a thermoplastic resin-based porous film containing a filler. This invention provides a nonaqueous electrolyte solution secondary battery separator which is formed from a porous film containing a thermoplastic resin and a filler contained in the thermoplastic resin and has a ratio of an average pore diameter (μm) to a maximum pore diameter (μm) defined by ASTM F316-86 of 0.6 or more as well as relates to a nonaqueous electrolyte solution secondary battery using this separator.
Owner:MITSUBISHI CHEM CORP

Electrode assembly

An electrode assembly is formed by respectively overlaying a sheet cathode 1, a sheet separator 3 and a double-sided sheet anode 8 to form a stacked structure 10, and subjecting the stacked structure to multiple folds, wherein the initial fold comprises folding the cathode in half around the double-sided anode so as to surround the respective upper and lower active anode surfaces thereof. The multiple folds may comprise one or more subsequent parallel folds made with the fold line D-D extending perpendicular to the original length of the stacked structure such that its overall length is halved at each fold. A pouch battery comprising said electrode assembly has improved safety and performance characteristics. The pouch battery construction has especial application to lithium primary batteries.
Owner:QINETIQ LTD

Lithium ion secondary battery

Disclosed is a lithium ion secondary battery including: a positive electrode including a positive electrode active material layer containing a positive electrode active material, and a positive electrode current collector; a negative electrode including a thin film negative electrode active material layer containing an alloy-based negative electrode active material, and a negative electrode current collector; a separator interposed between the positive electrode and the negative electrode; and an ion-permeable resin layer formed on a surface of the thin film negative electrode active material layer. In this lithium ion secondary battery, despite the use of the alloy-based negative electrode active material, the deterioration in battery performance such as cycle characteristics and output characteristics is prevented.
Owner:PANASONIC CORP

Electrode catalyst for fuel cell and method for production thereof

An electrode catalyst for a fuel cell is provided which excels in catalytic activity and catalytic durability. The electrode catalyst for the fuel cell has noble metal-containing particle deposited on an electroconductive carrier and the noble metal-containing particle possesses a core-shell structure comprising a core part formed of a noble metal alloy and a shell part formed of a noble metal layer different in composition from the core par and formed on the periphery of the core part. This core-shell structure enables the catalytic activity and the catalytic durability of the electrode catalyst to be enhanced simultaneously.
Owner:NISSAN MOTOR CO LTD

Polymer electrolyte film and method for preparation of the same, and solid polymer type fuel cell using the same

The polymer electrolyte membrane (PEM) of the present invention charged with a proton conductor in the collimated pores of a polymer film that is equipped with a plurality of such collimated pores in the direction of the film thickness is characterized with a relative standard deviation (LVar / LAve) equal to or below 0.3 wherein LAve and LVar represent an average value of L, distances between centers of the adjacent collimated pores and the standard deviation thereof, respectively. In addition, the PEM of the present invention can be prepared by installing a plurality of pores in the polymer film in the direction of the film thickness using photolithography and, subsequently, charging the above collimated pores with a proton conductor. Such constitution of the present invention can provide PEM with a small size, and improved performance and productivity; and also improvement of cell performance by inhibiting methanol permeation of DMFC that uses methanol as its fuel.
Owner:TORAY IND INC

Electrode catalyst for fuel cell and method for production thereof

An electrode catalyst for a fuel cell is provided which excels in catalytic activity and catalytic durability. The electrode catalyst for the fuel cell has noble metal-containing particle deposited on an electroconductive carrier and the noble metal-containing particle possesses a core-shell structure comprising a core part formed of a noble metal alloy and a shell part formed of a noble metal layer different in composition from the core par and formed on the periphery of the core part. This core-shell structure enables the catalytic activity and the catalytic durability of the electrode catalyst to be enhanced simultaneously.
Owner:NISSAN MOTOR CO LTD

Ambient temperature, rechargeable cells with metal salt-based electrodes and a system of cell component materials for use therein

A rechargeable battery or cell is disclosed in which the electrode active material consists of at least one nonmetallic compound or salt of the electropositive species on which the cell is based, and the electrolyte or electrolyte solvent consists predominantly of a halogen-bearing or chalcogen-bearing covalent compound such as SOCl2 or SO2Cl2. Also disclosed are cell component materials which include electrodes that consist primarily of salts of the cell electropositive species and chemically compatible electrolytes. These latter electrolytes include several newly discovered ambient temperature molten salt systems based on the AlCl3-PCl5 binary and the AlCl3-PCl5-PCl3 ternaries.
Owner:LIU CHANGLE

Battery Management System For A Distributed Energy Storage System, and Applications Thereof

The present invention provides a distributed energy storage system, and applications thereof. In an embodiment, the distributed energy storage system includes power units, wherein each power unit has a multi-cell battery; a battery manager that monitors battery cell voltages and temperatures; and a controller. The controller provides a first control signal that causes the power unit to store energy in the battery and a second control signal that causes the power unit to generate an alternating current. A server in communication with each of the power units stores data collected from the power units about the batteries and analyzes the data to determine how much available energy is stored in the batteries that can be used to alter a load demand of a power network, hi an embodiment, the batteries are lithium ion batteries capable of storing at least ten kilowatt- hours of energy.
Owner:BEASTON VIRGIL L +5
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products