Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

51results about How to "Small product" patented technology

Method for manufacturing a micromechanical relay

PCT No. PCT/EP97/06174 Sec. 371 Date May 11, 1999 Sec. 102(e) Date May 11, 1999 PCT Filed Nov. 6, 1997 PCT Pub. No. WO98/21734 PCT Pub. Date May 22, 1998A method of producing a micromechanical relay comprises the steps of providing a substrate including a conductive fixed electrode in or on said substrate. A sacrificial layer and a conductive layer are applied and the conductive layer is structured so as to define a beam structure as a movable counterelectrode opposite said fixed electrode. A contact area is applied, the conductive layer extending between an anchoring region and the contact area and being insulated from said contact area. Subsequently, the sacrificial layer is removed by means of etching so as to produce the beam structure comprising a movable area and an area secured to the anchoring region on the substrate. The beam structure is defined such that etch access openings in said beam structure are structured such that the size of the area covered by the etch access openings used for etching the sacrificial layer increases from the area of the beam structure secured to the substrate to the movable area of the beam structure so that the etching of the sacrificial layer is controlled in such a way that the portion of the sacrificial layer arranged below the movable area of the beam structure is etched faster than the portion of the sacrificial layer arranged in the area of the anchoring region.
Owner:FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG EV

Method and combustor for combusting hydrogen

A plate burner for combusting hydrogen with air as an oxidizer forms a wall portion of a combustion chamber for example of a gas turbine. The plate burner is so constructed that air and hydrogen are separately guided to the downstream surface area facing into the combustion chamber for forming a large number of diffusive microcombustion flames, thus achieving a very low mixing scale simultaneously with a high nixing intensity. The number of diffusive micorcombustion flames is so selected that the NOx content in the exhaust gas from the combustion chamber is at the most 10x10-6 cubic foot per cubic foot of exhaust gas. The hydrogen enters the entrance area into the combustion chamber either through a porous wall, and air is injected into the hydrogen environment to form inverse diffusive microcombustion flames or the hydrogen is injected through a multitude of fine holes into high velocity air jets forming regular diffusion flames. In both instances, the formation of NOx in the exhaust gas during combustion is reduced to the above level or below.
Owner:DAIMLER CHRYSLER AEROSPACE AIRBUS

Deliberate semiconductor film variation to compensate for radial processing differences, determine optimal device characteristics, or produce small productions

Methods and apparatuses are disclosed that can introduce deliberate semiconductor film variation during semiconductor manufacturing to compensate for radial processing differences, to determine optimal device characteristics, or produce small production runs. The present invention radially varies the thickness and/or composition of a semiconductor film to compensate for a known radial variation in the semiconductor film that is caused by performing a subsequent semiconductor processing step on the semiconductor film.Additionally, methods and apparatuses are disclosed that can introduce deliberate semiconductor film variations to determine optimal device characteristics or produce small production runs. Introducing semiconductor film variations, such as thickness variations and/or composition variations, allow different devices to be made. A number of devices may be made having variations in semiconductor film. Because the semiconductor film has variations between the devices, device characteristics of the devices should be different. By measuring the device characteristics of devices having the variations, the device with the optimum device characteristic may be chosen, thereby indicating the appropriate semiconductor film thickness and/or composition. Moreover, small production runs of the same devices, having different characteristics, will allow the end user to select the appropriate devices for their needs.
Owner:IBM CORP

Deliberate semiconductor film variation to compensate for radial processing differences, determine optimal device characteristics, or produce small production runs

Methods and apparatuses are disclosed that can introduce deliberate semiconductor film variation during semiconductor manufacturing to compensate for radial processing differences, to determine optimal device characteristics, or produce small production runs. The present invention radially varies the thickness and / or composition of a semiconductor film to compensate for a known radial variation in the semiconductor film that is caused by performing a subsequent semiconductor processing step on the semiconductor film. Additionally, methods and apparatuses are disclosed that can introduce deliberate semiconductor film variations to determine optimal device characteristics or produce small production runs. Introducing semiconductor film variations, such as thickness variations and / or composition variations, allow different devices to be made. A number of devices may be made having variations in semiconductor film. Because the semiconductor film has variations between the devices, device characteristics of the devices should be different. By measuring the device characteristics of devices having the variations, the device with the optimum device characteristic may be chosen, thereby indicating the appropriate semiconductor film thickness and / or composition. Moreover, small production runs of the same devices, having different characteristics, will allow the end user to select the appropriate devices for their needs.
Owner:IBM CORP

Method for producing organic electroluminescence device

A method for producing an organic electroluminescence device of the present invention includes a laminating step of laminating a belt-shaped sealing substrate 5 on a belt-shaped supporting substrate 2 on which a plurality of organic EL elements 3 are formed while interposing an uncured thermosetting type adhesive layer 52, a winding step of winding a belt-shaped laminated body 11 having the belt-shaped supporting substrate 2, the organic EL elements 3 and the sealing substrate 5 into a roll, and a curing step of applying heat to the laminated body 11 to perform curing of the adhesive layer 52 while the laminated body 11 remains wound into a roll.
Owner:NITTO DENKO CORP

Shear bar

The invention relates to a shear bar (20), in particular for a forage harvester or another agricultural or silvicultural machine, having a carrier (21) that comprises a cutting region (30); a plurality of cutting elements (31) being set alongside one another in the cutting region (30); the cutting elements (31) comprising a partial edge and at least some of the partial edges forming a cutting edge (32) that is embodied to form, with a knife bar, a cutting engagement for the material to be shredded; the cutting edge (32) forming a transition between a cutting surface (32.1) that is constituted by the cutting elements (31) and extends transversely to the cutting direction, and an exposed surface (32.2) that extends substantially in a cutting direction and indirectly or directly adjoins the cutting edge (32). A shear bar of this kind can be configured to be break-resistant with little complexity in terms of parts and manufacture if provision is made that an infeed element (34), which is embodied as a sintered part made of hard material having an infeed bevel (34.6) profiled on in the sintering process, is provided on or in the row of cutting elements (31); the infeed bevel (34.6) being carried over indirectly or directly into the cutting edge (32); and the infeed bevel (34.6) being arranged at a tilt with respect to the cutting edge (32) in such a way that it is arranged with a setback with respect to the exposed surface (32.2) and toward the cutting surface (32.1).
Owner:BETEK
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products