Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

63results about "Graphene nanoribbons" patented technology

Method for preparing graphene ribbons

Disclosed is a method for fabricating graphene ribbons, comprising: preparing a graphitic material comprising stacked graphene helices; and cutting the graphitic material in a short form by applying energy to the graphitic material; and simultaneously or afterward, decomposing the graphitic material into short graphene ribbons. This method provides a mass production route to graphene ribbons.
Owner:KOREA INST OF SCI & TECH

Structure and method of making graphene nanoribbons

Disclosed is a ribbon of graphene less than 3 nm wide, more preferably less than 1 nm wide. In a more preferred embodiment, there are multiple ribbons of graphene each with a width of one of the following dimensions: the length of 2 phenyl rings fused together, the length of 3 phenyl rings fused together, the length of 4 phenyl rings fused together, and the length of 5 phenyl rings fused together. In another preferred embodiment the edges of the ribbons are parallel to each other. In another preferred embodiment, the ribbons have at least one arm chair edge and may have wider widths.The invention further comprises a method of making a ribbon of graphene comprising the steps of:a. placing one or more polyaromatic hydrocarbon (PAH) precursors on a substrate;b. applying UV light to the PAH until one or more intermolecular bonds are formed between adjacent PAH molecules; andc. applying heat to the PAH molecules to increase the number of intermolecular bonds that are formed to create a ribbon of graphene.The invention further comprises an electrical device structure having two or more ribbons of graphene in surface to surface contact with a non conductive substrate. Each of the ribbons has a width less than 3 nm and each of the ribbons has edges that are parallel to one another. In a preferred embodiment the ribbons comprise a channel in a Field Effect Transistor (FET).
Owner:IBM CORP

Method for forming graphene nanoribbons

A method for forming graphene nanoribbons includes: (a) dispersing carbon nanotubes in a solvent to obtain a nanotube-dispersing solution; (b) adding an oxidant into the nanotube-dispersing solution to obtain a reaction solution; and (c) microwave heating the reaction solution and longitudinally unzipping the carbon nanotubes to form graphene nanoribbons.
Owner:CHANG GUNG UNIVERSITY

Graphene nanoribbons, methods of making same, and uses thereof

Provided are graphene nanoribbons (GNRs), methods of making GNRs, and uses of the GNRs. The methods can provide control over GNR parameters such as, for example, length, width, and edge composition (e.g., edge functional groups). The methods are based on a metal catalyzed cycloaddition reaction at the carbon-carbon triple bonds of a poly(phenylene ethynylene) polymer. The GNRs can be used in devices such a microelectronic devices.
Owner:CORNELL UNIVERSITY

Electrochemical process for synthesis of graphene

A process for the transformation of carbon nanotubes (CNTs) to nanoribbons composed of a few layers of graphene by a two-step electrochemical approach is disclosed in this invention. This consists of the oxidation of CNTs at controlled potential, followed by reduction to form graphene nanoribbons (GNRs) having smooth edges and fewer defects, as evidenced by multiple characterization techniques, including Raman spectroscopy, atomic force micro-scopy, and transmission electron microscopy. This type of ‘unzipping” of CNTs (single-walled, multi-walled) in the presence of an interfacial electric field provides unique advantages with respect to the orientation of CNTs, which might make possible the production of GNRs with controlled widths and fewer defects. The extent of oxidation was confirmed by various characterization techniques like XRD, XPS and Raman spectroscopy. In the second step of experiments, the CNT oxide were reduced for different periods such as 4, 8, 12 hours at fixed negative potentials of −0.5 V, so as to get layers of graphene ribbons as tabulated herein.
Owner:COUNCIL OF SCI & IND RES

Graphene nanoribbons, methods of making same, and uses thereof

Provided are graphene nanoribbons (GNR), methods of making GNR, and uses of the GNR. The methods can provide control over GNR parameters such as, for example, length, width, and edge composition (e.g., edge functional groups). The methods are based on a metal catalyzed cycloaddition reaction at the carbon-carbon triple bonds of a poly(phenylene ethynylene) polymer. The GNR can be used in devices such as microelectronic devices.
Owner:CORNELL UNIVERSITY

Random graphite and fabrication method thereof using graphene nanoribbon

Random graphite which is a type of graphite comprising three-dimensionally random graphene layers, and a fabrication method thereof at a low temperature as below 100° C. are disclosed. Random graphite may have a large volume of an empty space due to the feature of the presence of the three-dimensionally random graphene nanoribbons. Thus, it can be applied to Graphitic Intercalation Compound (GIC) such as electrodes for Li-ion battery.
Owner:KOREA INST OF SCI & TECH

Preparation method of fluorinated graphene nanobelt

The invention provides a method for preparing a fluorinated graphene nanobelt by taking fluorine gas as a fluorine source. The method comprises the step: fluorinating an anhydrous carbon nanotube under the conditions of -0.07 to 0 MPa and 280 to 450 DEG C and under the atmosphere of fluorine gas to obtain the fluorinated graphene nanobelt. The method provided by the invention is simple to operate,wide in raw material source, low in cost and high in yield; the yield can reach dozens of milligrams, even hundreds of milligrams; and furthermore, aftertreatment is simple, and the fluorinated graphene nanobelt can be prepared through one-step reaction. The prepared fluorinated graphene nanobelt has high super-hydrophobicity and chemical stability, can be applied in the fields of protective iceand the like and has a very good application prospect.
Owner:TIANJIN UNIV

Few-layer graphene nanoribbon and a method of making the same

A method of preparing graphene nanoribbons from a few-layer graphene film includes the steps of growing or placing a few-layer graphene film on a substrate, applying nanoparticles to a surface of the few-layer graphene layer on the substrate and performing chemical vapor etching. The resulting few-layer graphene nanoribbon has a thickness of between about 0.3 nm and about 50.0 nm and a width of between about 1.0 nm and about 20.0 nm.
Owner:UNIV OF KENTUCKY RES FOUND

Fabrication method of graphene-controlled nano-graphite

The present invention relates to a method of fabricating a carbon material and, more particularly, to a method for fabricating graphite having a nano-ribbon shape (hereinafter, referred to as a ‘graphene-controlled nano-graphite’) through a heat treatment of graphene nano-powders, and a graphene-controlled nano-graphite fabricated through the method. The method for fabricating graphene-controlled nano-graphite includes a preparation step of preparing graphene powders and a fabrication step of fabricating graphene-controlled nano-graphite through heat treatment of the graphene powders. The graphene powder may be fabricated by disintegrating crystalline graphite.
Owner:KOREA INST OF SCI & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products