Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1091results about "Counting chain pulse counters" patented technology

Digital wavetable audio synthesizer with delay-based effects processing

A digital wavetable audio synthesizer is described. The synthesizer can generate up to 32 high-quality audio digital signals or voices, including delay-based effects, at either a 44.1 KHz sample rate or at sample rates compatible with a prior art wavetable synthesizer. The synthesizer includes an address generator which has several modes of addressing wavetable data. The address generator's addressing rate controls the pitch of the synthesizer's output signal. The synthesizer performs a 10-bit interpolation, using the wavetable data addressed by the address generator, to interpolate additional data samples. When the address generator loops through a block of data, the signal path interpolates between the data at the end and start addresses of the block of data to prevent discontinuities in the generated signal. A synthesizer volume generator, which has several modes of controlling the volume, adds envelope, right offset, left offset, and effects volume to the data. The data can be placed in one of sixteen fixed stereo pan positions, or left and right offsets can be programmed to place the data anywhere in the stereo field. The left and right offset values can also be programmed to control the overall volume. Zipper noise is prevented by controlling the volume increment. A synthesizer LFO generator can add LFO variation to: (i) the wavetable data addressing rate, for creating a vibrato effect; and (ii) a voice's volume, for creating a tremolo effect. Generated data to be output from the synthesizer is stored in left and right accumulators. However, when creating delay-based effects, data is stored in one of several effects accumulators. This data is then written to a wavetable. The difference between the wavetable write and read addresses for this data provides a delay for echo and reverb effects. LFO variations added to the read address create chorus and flange effects. The volume of the delay-based effects data can be attenuated to provide volume decay for an echo effect. After the delay-based effects processing, the data can be provided with left and right offset volume components which determine how much of the effect is heard and its stereo position. The data is then stored in the left and right accumulators.
Owner:MICROSEMI SEMICON U S

Phase lock loop with coarse control loop having frequency lock detector and device including same

A phase lock loop (PLL) for controlling a sampling clock or other clock, and a data sampling circuit, transceiver, or other device including such a PLL. The PLL includes a multi-range VCO, at least one fine control loop for controlling the VCO, and a coarse control loop for controlling the VCO by changing its frequency-voltage characteristic. The coarse control loop includes a frequency lock detector and voltage range monitoring logic. Typically, the frequency lock detector locks operation of the coarse control loop when the difference between the VCO output clock frequency and a reference frequency decreases to within a predetermined threshold, and the unlocked coarse control loop employs the voltage range monitoring logic to change the VCO frequency-voltage characteristic when the VCO's fine control voltage leaves a predetermined range. Other aspects are a transceiver (including at least two receiver interfaces and a transmitter interface) implementing a clocking scheme employing no more than three PLLs for clock generation, and a transceiver having a multi-layered receiver interface including digital circuitry and a single clock-generating PLL (an analog PLL for generating a multiphase clock to be shared by all layers of the receiver interface). Each receiver interface layer performs blind oversampling on a different received signal using the multiphase clock and the digital circuitry includes multilayered digital phase lock loop circuitry which receives the oversampled data.
Owner:LATTICE SEMICON CORP

Clock generator and clock generating method capable of varying clock frequency without increasing the number of delay elements

A clock generator including a frequency multiplier, a phase lock circuit and a frequency divider. The frequency multiplier generates a frequency multiplied clock by multiplying the frequency of an input clock. The phase lock circuit detects a phase difference between the input clock and a frequency divided clock, and generates, by delaying the frequency multiplied clock by an amount corresponding to the phase difference, a phase-locked clock with its phase locked with the input clock. The frequency divider detects in every fixed cycle a particular pulse of the phase-locked clock, and generates the frequency divided clock by dividing the phase-locked clock with reference to the particular pulse of the phase-locked clock. In particular, the frequency divider detects the particular pulse immediately previous to a falling edge of the input clock. This can reduce the phase difference between the input clock and the phase-locked clock, and hence to solve a problem of a conventional clock generator in that a delay time of a digital delay line in a phase lock circuit must be lengthened with a reduction in the multiplication number of the frequency multiplied clock, which requires a greater number of delay elements because of a large occupying area of the delay elements and a decoder, thereby increasing the circuit scale and cost of a chip to reduce the multiplication number of the frequency multiplied clock.
Owner:RENESAS ELECTRONICS CORP

Wavetable audio synthesizer with left offset, right offset and effects volume control

A digital wavetable audio synthesizer is described. A synthesizer volume generator, which has several modes of controlling the volume, adds envelope, right offset, left offset, and effects volume to the data. The data can be placed in one of sixteen fixed stereo pan positions, or left and right offsets can be programmed to place the data anywhere in the stereo field. The left and right offset values can also be programmed to control the overall volume. Zipper noise is prevented by controlling the volume increment. A synthesizer LFO generator can ad LFO variation to: (i) the wavetable data addressing rate, for creating a vibrato effect; and (ii) a voice's volume, for creating a tremolo effect. Generated data to be output from the synthesizer is stored in left and right accumulators. However, when creating delay-based effects, data is stored in one of several effects accumulators. This data is then written to a wavetable. The difference between the wavetable write and read addresses for this data provides a delay for echo and reverb effects. LFO variations added to the read address create a chorus and flange effects. The volume of the delay-based effects data can be attenuated to provide volume decay for an echo effect. After the delay-based effects processing, the data can be provided with left and right offset volume components which determine how much of the effect is heard and its stereo position. The data is then stored in the left and right accumulators.
Owner:MICROSEMI SEMICON U S

Receiver circuit and receiving method

Clock signals are supplied, with a phase shift of 1 / n cycles between adjacent clock signals. A data acquisition unit acquires serial data at a timing of each of the clock signals. A phase detection unit detects the phase of the transition edge of the serial data using n bits of data. An effective bit number determination unit determines the effective bit number, which is the number of bits to be acquired, based upon the phase of the transition edge of the serial data in the current data-bit acquisition step and the phase of the transition edge of the serial data in the previous data-bit acquisition step. A data-bit output unit outputs the effective bit number of the bits of data acquired at a timing of each clock signal having a predetermined phase relation with the transition edge of the serial data.
Owner:ROHM CO LTD

User registers implemented with routing circuits in a configurable IC

Some embodiments of the invention provide a configurable integrated circuit (“IC”). The configurable IC includes a set of configurable logic circuits for configurably performing a set of functions. The configurable IC also includes a set of configurable routing circuits for routing signals to and from the configurable circuits. During several operational cycles of the configurable IC, a set of data registers are defined by the configurable routing circuits. These data registers may be used wherever a flip-flop can be used.
Owner:TAHOE RES LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products