Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1289 results about "Wafer-level packaging" patented technology

Wafer-level packaging (WLP) is the technology of packaging an integrated circuit while still part of the wafer, in contrast to the more conventional method of slicing the wafer into individual circuits (dice) and then packaging them. WLP is essentially a true chip-scale package (CSP) technology, since the resulting package is practically of the same size as the die. Wafer-level packaging allows integration of wafer fab, packaging, test, and burn-in at wafer level in order to streamline the manufacturing process undergone by a device from silicon start to customer shipment.

Wafer level package for very small footprint and low profile white LED devices

A surface mount LED package having a tight footprint and small vertical image size is fabricated by a method comprising: forming light emitting diode chips each having a substrate and a plurality of layers configured to emit electroluminescence responsive to electrical energizing; forming electrical vias in a sub mount, the electrical vias passing from a front side of the sub-mount to a back-side of the sub-mount; flip chip bonding the light emitting diode chips on the front-side of the sub mount such that each light emitting diode chip electrically contacts selected electrical vias; thinning or removing the substrates of the flip-chip bonded light emitting diode chips; and after the thinning, disposing a phosphor over the flip chip bonded light emitting diode chips.
Owner:GE LIGHTING SOLUTIONS LLC

Image sensor module with a three-dimensional die-stacking structure

This invention provides an image sensor module with a three-dimensional die-stacking structure. By filling a conductive material into through silicon vias within at least one image sensor die, and into via holes within an insulating layer, vertical electrical connections are formed between the image sensor die and an image processor buried in the insulating layer. A plurality of solder bumps is formed on a backside of the image sensor module so that the module can be directly assembled onto a circuit board. The image sensor module of this invention is characterized by a wafer-level packaging architecture and a three-dimensional die-stacking structure, which reduces electrical connection lengths within the module and thus reduces an area and height of the whole packaged module.
Owner:IND TECH RES INST

Structure for Electrostatic Discharge in Embedded Wafer Level Packages

A workpiece has at least two semiconductor chips, each semiconductor chip having a first main surface, which is at least partially exposed, and a second main surface. The workpiece also comprises an electrically conducting layer, arranged on the at least two semiconductor chips, the electrically conducting layer being arranged at least on regions of the second main surface, and a molding compound, arranged on the electrically conducting layer.
Owner:TAHOE RES LTD

Stacked wafer scale package

A device comprising a first die enclosed in a wafer scale package, said first die adapted to mate with a printed circuit board (“PCB”) via solder bumps. The device further comprises a second die enclosed in a wafer scale package and electrically connected to a surface of the first die facing the PCB to form a die stack.
Owner:TEXAS INSTR INC

Carrier for wafer-scale package and wafer-scale package including the carrier

A carrier for use in a chip-scale package, including a semiconductor substrate, such as a semiconductor wafer, with a plurality of apertures formed therethrough. The present invention also includes a chip-scale package including the carrier. When the carrier is employed in such a package, a semiconductor device or a wafer including a plurality of semiconductor devices thereon is invertedly aligned with and disposed over the carrier so that bond pads of the semiconductor device or semiconductor devices substantially align with apertures through the semiconductor substrate. The chip-scale package also includes conductive material disposed in each of the apertures of the semiconductor substrate to form vias through the semiconductor substrate. Conductive traces may extend substantially laterally from selected vias. The chip-scale package may also include a contact or conductive bump disposed in communication with each via. An intermediate layer may be disposed between the semiconductor device and the semiconductor substrate. The intermediate layer may secure the semiconductor device to the semiconductor substrate and insulate structures of the semiconductor device. An insulative layer may be disposed on the semiconductor substrate opposite the semiconductor device. If the chip-scale package includes an intermediate layer or an insulative layer, the electrically conductive vias that extend through the semiconductor substrate are preferably exposed through such layers. The present invention also includes methods of fabricating the semiconductor substrate and assembling a chip-scale package of the invention, including substantially simultaneously assembling semiconductor devices and carrier substrates on a wafer-scale and singulating individual chip-scale packages from the assembled wafers.
Owner:MICRON TECH INC

Wafer level package with die receiving cavity and method of the same

The present invention provides a structure of package comprising a substrate with a die receiving cavity formed within an upper surface of the substrate and a through hole structure formed there through, wherein a terminal pad is formed under the through hole structure and the substrate includes a conductive trace formed on a lower surface of the substrate. A die is disposed within the die receiving cavity by adhesion and a dielectric layer formed on the die and the substrate. A re-distribution metal layer (RDL) is formed on the dielectric layer and coupled to the die and the through hole structure. Conductive bumps are coupled to the terminal pad.
Owner:ADVANCED CHIP ENG TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products