Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

388 results about "Human proteins" patented technology

Proteins are essential nutrients for the human body. They are one of the building blocks of body tissue, and can also serve as a fuel source. As a fuel, proteins provide as much energy density as carbohydrates: 4 kcal (17 kJ) per gram; in contrast, lipids provide 9 kcal (37 kJ) per gram.

Crystalline frap complex

The invention relates to the human protein FRAP, and in particular to the FKBP12-rapamycin binding domain thereof and to the ternary complex formed by the FRB domain, rapamycin and FKBP12. A new crystalline composition comprising the ternary complex, coordinates defining its three dimensional structure in atomic detail, and uses thereof are disclosed.
Owner:CORNELL RES FOUNDATION INC

Pharmaceutical proteins, human therapeutics, human serum albumin, insulin, native cholera toxic b submitted on transgenic plastids

Transgenic chloroplast technology could provide a viable solution to the production of Insulin-like Growth Factor I (IGF-I), Human Serum Albumin (HSA), or interferons (IFN) because of hyper-expression capabilities, ability to fold and process eukaryotic proteins with disulfide bridges (thereby eliminating the need for expensive post-purification processing). Tobacco is an ideal choice because of its large biomass, ease of scale-up (million seeds per plant), genetic manipulation and impending need to explore alternate uses for this hazardous crop. Therefore, all three human proteins will be expressed as follows: a) Develop recombinant DNA vectors for enhanced expression via tobacco chloroplast genomes b) generate transgenic plants c) characterize transgenic expression of proteins or fusion proteins using molecular and biochemical methods d) large scale purification of therapeutic proteins from transgenic tobacco and comparison of current purification/processing methods in E. coli or yeast e) Characterization and comparison of therapeutic proteins (yield, purity, functionality) produced in yeast or E. coli with transgenic tobacco f) animal testing and pre-clinical trials for effectiveness of the therapeutic proteins. Mass production of affordable vaccines can be achieved by genetically engineering plants to produce recombinant proteins that are candidate vaccine antigens. The B subunits of Enteroxigenic E. coli (LTB) and cholera toxin of Vibrio cholerae (CTB) are examples of such antigens. When the native LTB gene was expressed via the tobacco nuclear genome, LTB accumulated at levels less than 0.01% of the total soluble leaf protein. Production of effective levels of LTB in plants, required extensive codon modification. Amplification of an unmodified CTB coding sequence in chloroplasts, up to 10,000 copies per cell, resulted in the accumulation of up to 4.1% of total soluble tobacco leaf protein as oligomers (about 410 fold higher expression levels than that of the unmodified LTB gene). PCR and Southern blot analyses confirmed stable integration of the CTB gene into the chloroplast genome. Western blot analysis showed that chloroplast synthesized CTB assembled into oligomers and was antigenically identical to purified native CTB. Also, GM1,-ganglioside binding assays confirmed that chloroplast synthesized CTB binds to the intestinal membrane receptor of cholera toxin, indicating correct folding and disulfide bond formation within the chloroplast. In contrast to stunted nuclear transgenic plants, chloroplast transgenic plants were morphologically indistinguishable from untransformed plants, when CTB was constitutively expressed. The introduced gene was stably inherited in the subsequent generation as confirmed by PCR and Southern blot analyses. Incrased production of an efficient transmucosal carrier molecule and delivery system, like CTB, in transgenic chloroplasts makes plant based oral vaccines and fusion proteins with CTB needing oral administration a much more practical approach.
Owner:AUBURN UNIV +1

Method and system for predicting protein interaction target point of drug

The invention relates to a method and a system for predicting a protein interaction target point of a drug. The method comprises: 1) collecting a human protein interaction network and single protein target point data of the drug, and constructing an interactive protein target point data set of the drug; 2) obtaining description data of the drug and proteins; 3) constructing a bigraph for representing an interactive relationship between the drug and a protein pair, constructing a similar matrix for representing drug similarity and protein pair similarity, establishing a kernel function for correlating the similar matrix of the drug and the protein pair, and establishing a prediction model through a machine learning algorithm; and 4) performing independent set testing by utilizing unknown drug and interactive protein pair, and predicting a possibly existent unknown drug protein interaction target point, and verifying a prediction result through database and document retrieval. According to the method and the system, the search space of the drug target point can be expanded and the more specific drug protein interaction target point with the best classification performance can be obtained.
Owner:ACAD OF MATHEMATICS & SYSTEMS SCIENCE - CHINESE ACAD OF SCI +1

Targeting interferon-lambda with antibodies potently enhances Anti-tumor and Anti-viral activities

ActiveUS20130136718A1Useful effectReduce amyloid plaqueMaterial nanotechnologyPeptide/protein ingredientsAntigen bindingAsthma
The present invention concerns methods and compositions for forming complexes of interferon-λ with an antibody or antigen-binding antibody fragment. In preferred embodiments, the interferon-λ and the antibody or fragment are fusion proteins, each comprising a dimerization and docking domain (DDD) moiety from human protein kinase A or an anchor domain (AD) moiety from an A-kinase anchoring protein (AKAP). In more preferred embodiments, the interferon-antibody complex is more efficacious for treatment of cancer, asthma, Alzheimer's disease, multiple sclerosis or viral infection than interferon-λ alone, antibody alone, or the combination of unconjugated interferon-λ and antibody.
Owner:IBC PHARMACEUTICALS INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products