Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

30 results about "Homoserine dehydrogenase" patented technology

In enzymology, a homoserine dehydrogenase (EC 1.1.1.3) is an enzyme that catalyzes the chemical reaction L-homoserine + NAD(P)⁺ ⇌ L-aspartate 4-semialdehyde + NAD(P)H + H⁺ The 2 substrates of this enzyme are L-homoserine and NAD⁺ (or NADP⁺), whereas its 3 products are L-aspartate 4-semialdehyde, NADH (or NADPH), and H⁺. This enzyme belongs to the family of oxidoreductases, specifically those acting on the CH-OH group of donor with NAD⁺ or NADP⁺ as acceptor.

Plant methionine synthase gene and methods for increasing the methionine content of the seeds of plants

InactiveUS7026527B2Increase level of methionineTransferasesFermentationChloroplastMethionine level
This invention relates to a nucleic acid fragment encoding a plant 5-methyltetra-hydropteroyltriglutamate-homocysteine methyltransferase or methionine synthase. The invention also includes chimeric genes, a first encoding a plant methionine synthase (MS) gene, a second encoding a plant cystathionine γ-synthase (CS) gene, a third encoding feedback-insensitive aspartokinase (AK) or bifunctional feedback-insensitive aspartokinase-homoserine dehydrogenase (AK-HDH), which is operably linked to a plant chloroplast transit sequence, and a fourth encoding a methionine-rich protein, all operably linked to plant seed-specific regulatory sequences. Methods for their use to produce increased levels of methionine in the seeds of transformed plants are provided.
Owner:EI DU PONT DE NEMOURS & CO

Method for synthesizing ursodeoxycholic acid and high-chiral-purity D-amino acid based on enzyme-method coupling technology

The invention discloses a method for synthesizing ursodeoxycholic acid (UDCA) and high-chiral-purity D-amino acid based on an enzyme-method coupling technology. The method comprises the following steps: putting chenodeoxycholic acid and alpha-ketonic acid into a solution system containing 7alpha-HSDH (Homoserine Dehydrogenase), DAADH and NADP (Nicotinamide Adenine Dinucleotide Phosphate) and carrying out enzyme catalysis reaction; separating a reaction solution by adopting an ultra-filtration membrane to obtain a concentrated mixed enzyme solution; regulating the pH (Potential of Hydrogen) ofa dialysis solution and crystallizing; filtering and separating to obtain 7-KLCA wet powder and filtrate; carrying out chromatographic treatment on the filtrate to obtain the D-amino acid; putting the7-KLCA wet powder into a solution system containing glucose, the NADP, the 7alpha-HSDH and GDH (Glutamate Dehydrogenase) and carrying out enzyme catalysis reaction; separating the reaction solution by adopting the ultra-filtration membrane to obtain the concentrated mixed enzyme solution; crystallizing, filtering and separating the dialysis solution, so as to obtain ursodeoxycholic acid. By adopting the method provided by the invention, UDCA and the high-chiral-purity D-amino acid can be obtained at the same time, the enzyme utilization rate is high, synthesis steps are simple and the cost isreduced; meanwhile, a metal reduction reagent and an organic solvent do not need to be added in a reaction process and conditions are mild; the method is environmentally friendly and is suitable forindustrial production.
Owner:HUNAN BAOLISHI BIOTECH

Combination therapies for fungal pathogens

The present invention relates to methods of treating fungal infections with a drug combination: a first compound that inhibits the activity or expression of the protein FKBP12 and a second compound that inhibits the activity or expression of homoserine dehydrogenase. Evidence indicates that dual inhibitors of proteins FKBP12 and homoserine dehydrogenase are lethal to fungi. Such an approach should be minimally toxic since this combination therapy targets a biosynthetic pathway that is conserved in fungi but not in mammals.
Owner:DUKE UNIV +1

Recombinant corynebacterium glutamicum, construction method thereof and method for producing tetrahydropyrimidine by same

The invention relates to recombinant corynebacterium glutamicum, a method for constructing the recombinant corynebacterium glutamicum and a method for producing tetrahydropyrimidine by using the recombinant corynebacterium glutamicum. Compared with wild corynebacterium glutamicum, the recombinant corynebacterium glutamicum has phosphoenolpyruvate carboxylase, homoserine dehydrogenase and dihydropyrimidinedicarboxylate synthetase with reduced expression level, and also has a gene expression cassette for expressing phosphoenolpyruvate carboxylase and a gene expression cassette for expressing ectA enzyme, ectB enzyme and ectC enzyme, so that tetrahydropyrimidine can be efficiently produced. The tetrahydropyrimidine produced by using the recombinant corynebacterium glutamicum has high yield, the safety of tetrahydropyrimidine products is improved, the production cost is greatly reduced, and the recombinant corynebacterium glutamicum has good market application prospect.
Owner:BEIJING BIOINNO BIOTECHNOLOGY CO LTD

Method for L-threonine production

A method for producing L-threonine using a microorganism is provided. In the method, additional one or more copies of each of the phosphoenolpyruvate carboxylase (ppc) gene and the threonine operon are integrated into a particular site of the chromosomal DNA of a microorganism, while its inherent ppc gene and threonine operon remain. Accordingly, two or more ppc genes and threonine operons are included in the chromosomal DNA of the microorganism to thereby enhance the expression of the ppc gene encoding an enzyme to convert phosphoenolpyruvate to a threonine biosynthesis precursor, oxaloacetete, and the genes encoding enzymes involved in the synthetic pathway of threonine from oxaloacetate, including thrA (aspartokinasel-homoserine dehydrogenase), thrB (homoserine kinase), and thrC (threonine synthase), thereby markedly increasing L-threonine productivity.
Owner:CJ CHEILJEDANG CORP

Proteinic biomass preparation comprising a non-native organism of the clostridia class

A proteinic biomass preparation comprising a non-native organism of the Clostridia class, which organism expresses (i) a modified aspartate kinase; (ii) a modified homoserine dehydrogenase; (iii) a modified homoserine kinase; (iv) a modified anthranilate synthase; (v) a functional lycopene pathway and the genes crtY, crtW, and crtZ; and / or (vi) a functional oleic acid pathway and the four gene operon (pfaABCD). Methods of producing proteinic biomass preparations are also described.
Owner:SUPERBREWED FOOD INC

Genetically engineered bacteria used for producing uridine with high-yield and its construction method and use

The present disclosure relates to a genetically engineered strain with high production of uridine and its construction method and application. The strain was constructed as follows: heterologously expressing pyrimidine nucleoside operon sequence pyrBCAKDFE (SEQ ID NO:1) on the genome of E coli prompted by strong promoter Ptrc to reconstruct the pathway of uridine synthesis; overexpressing the autologous prsA gene coding PRPP synthase by integration of another copy of prsA gene promoted by strong promoter Ptrc on the genome; deficiency of uridine kinase, uridine phosphorylase, ribonucleoside hydrolase, homoserine dehydrogenase I and ornithine carbamoyltransferase. When the bacteria was used for producing uridine, 40-67 g / L uridine could be obtained in a 5 L fermentator after fermentation for 40-70 h using the technical scheme provided by the discloure with the maximum productivity of 0.15-0.25 g uridine / g glucose and 1.5 g / L / h respectively which is the highest level of fermentative producing uridine reported at present.
Owner:TIANJIN UNIVERSITY OF SCIENCE AND TECHNOLOGY

N-acetyl homoserine

The present invention relates to a compound of general formula IThe present invention also relates to a method of producing N-acetyl homoserine and / or derivatives thereof, the method comprisingcontacting at least one recombinant cell in an aqueous medium with acetate wherein the recombinant cell comprises an increased activity relative to a wild type cell of(a) an enzyme E1, a homoserine dehydrogenase (EC1.1.1.3) and / or an enzyme E5, an aspartokinase (EC2.7.2.4); and(b) an enzyme E2, a homoserine O-acetyl transferase (EC2.3.1.31)and the acetate is maintained at a concentration of at least about 0.001 g / L in the aqueous medium.
Owner:EVONIK OPERATIONS GMBH

Homoserine dehydrogenase gene inactivation method of Bacillus subtilis

The invention relates to a homoserine dehydrogenase gene inactivation method of Bacillus subtilis, which comprises the following steps: establishing a PCR (polymerase chain reaction) product plasmid for homologous recombination, wherein the recombinant plasmid is composed of a pMD18-T vector, a kanamycin resistance gene and a homoserine dehydrogenase gene, and the homologous recombinant DNA (deoxyribonucleic acid) segment contains a homoserine dehydrogenase gene for substituting knock-out gene and a kanamycin resistance gene inserted in the middle of the homoserine dehydrogenase gene; and carrying out PCR amplification on the homoserine dehydrogenase gene and kanamycin resistance gene inserted in the middle of the homoserine dehydrogenase gene from the recombinant plasmid so as to obtain the single-chain PCR product, electrically transforming the single-chain PCR product into a Bacillus subtilis competent cell to obtain a transformant, and screening the positive transformant to obtain the homoserine dehydrogenase gene inactivated mutant strain. Compared with the existing technique for transforming the homoserine dehydrogenase recombinant plasmid into the Bacillus subtilis competent cell, the method is more simple and time-saving.
Owner:INST OF SUBTROPICAL AGRI CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products