Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

53 results about "Electrochemical double layer capacitor" patented technology

Methods of forming nanoporous carbon material and electrodes and electrochemical double layer capacitors therefrom

A method of forming nanoporous carbon material includes the steps of providing a natural carbonaceous material, the carbonaceous material having pores being filled with at least one other material, and treating the carbonaceous material with a strong acid or a strong base, wherein the other material is removed from the pores to form a nanoporous carbon material having open pores available for organic electrolyte. The nanoporous carbon material can be used to form composite electrodes by impregnating the open pores with an organic electrolyte. Such electrodes can be used to form electrochemical double layer capacitors (EDLC), such as by disposing an electrically insulating layer comprising a plurality of nano-size dielectric particles together with a binder directly onto a surface of at least one of anode and the cathode, and interposing the electrically insulating layer between the anode and the cathode. EDLCs formed using the invention are low cost and provide large specific energy stored and low inner resistance resulting in high power output.
Owner:ELENA OLENA SHEMBEL +1

Oblong electrochemical double layer capacitor

An oblong electrochemical double-layer capacitor is disclosed having a modified jelly roll design and having a plurality of fingers extending from each electrode in substantially the same direction. A packaged electrochemical double-layer capacitor is also disclosed comprising the oblong electrochemical double-layer capacitor having a modified jelly roll design. A method for manufacturing an oblong electrochemical double-layer capacitor having a modified jelly roll design is also disclosed.
Owner:CORNING INC

Electrochemical double-layer capacitor using organosilicon electrolytes

Disclosed are supercapacitors having organosilicon electrolytes, high surface area / porous electrodes, and optionally organosilicon separators. Electrodes are formed from high surface area material (such as porous carbon nanotubes or carbon nanofibers), which has been impregnated with the electrolyte. These type devices appear particularly suitable for use in electric and hybrid electric vehicles.
Owner:WISCONSIN ALUMNI RES FOUND

Carbon Surface Modifications

Electrode material typically is made from treated carbons. The number of functional groups residing on the treated carbon is reduced before the treated carbon is integrated into an electrochemical double layer capacitor. In one implementation, the number of functional groups on a given treated carbon is reduced by over 80%.
Owner:TESLA INC

Nanocomposites, synthesis method thereof and capacitor comprising the same

A method for the synthesis of nanocomposites is provided. The method comprises the steps of mixing carbon nanotubes with a urea solution to form urea / carbon nanotube composites (first step), mixing the urea / carbon nanotube composites with a solution of a metal oxide or hydroxide precursor to prepare a precursor solution (second step), and hydrolyzing the urea in the precursor solution to form a metal oxide or hydroxide coating on the carbon nanotubes (third step). Further provided are nanocomposites synthesized by the method. In the nanocomposites, a metal oxide or hydroxide is coated to a uniform thickness in the nanometer range on porous carbon nanotubes. Advantageously, the thickness of the coating can be easily regulated by controlling the urea content of urea / carbon nanotube composites as precursors. In addition, the nanocomposites are nanometer-sized powders and have high electrical conductivity and large specific surface area. Therefore, the nanocomposites are useful as electrode active materials for electrochemical capacitors, including pseudo capacitors and electrochemical double layer capacitors, lithium secondary batteries, and polymer batteries. Further provided is a capacitor comprising the nanocomposites.
Owner:IND ACADEMIC CORP FOUND YONSEI UNIV

Low Symmetry Molecules And Phosphonium Salts, Methods Of Making And Devices Formed There From

InactiveUS20140199585A1Low structural featureWide liquidus rangeHybrid capacitor electrolytesElectrolytic capacitorsPhosphoniumPhosphonium salt
Synthesis of molecules and salts is disclosed having low average symmetry and their use in many applications, including but not limited to: as electrolytes in electronic devices such as memory devices including static, permanent and dynamic random access memory, as electrolytes in energy storage devices such as batteries, electrochemical double layer capacitors (EDLCs) or supercapacitors or ultracapacitors, electrolytic capacitors, as electrolytes in dye-sensitized solar cells (DSSCs), as electrolytes in fuel cells, as a heat transfer medium, high temperature reaction and / or extraction media, among other applications. In particular, synthesis methods and processes to form molecules and salts having low average symmetry using mixed Grignard reagents are disclosed.
Owner:ESIONIC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products