Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

36results about How to "Voltage variation" patented technology

Charge pump phase locked loop with improved power supply rejection

A phase lock loop circuit (60) has a phase frequency detector (62), a charge pump (64), an active filter (87) and a voltage-controlled oscillator (100). The phase detector generates signals responsive to reference signal FR and VCO output signal FV. A charge pump generates a voltage at the input of a first transmission gate (76) according to the values of the phase detector signals. A predetermined voltage is generated at the input of a second transmission gate (112). When the transmission gates (76, 110) are closed (low impedance) the charge pump may sink or source current to the inverting input of the operational amplifier (86) of the active filter 86 and the predetermined voltage is applied to the non-inverting input. When the transmission gates are open (high impedance state) the inverting input is electrically isolated from the node and the non-inverting output is isolated from the power supply.
Owner:TEXAS INSTR INC

Voltage conversion device and computer-readable recording medium with program recorded thereon for computer to execute control of voltage conversion by voltage conversion device

A control device calculates a voltage command value of a voltage step-up converter based on a torque command value and a motor revolution number and calculates the on-duty of an NPN transistor based on the calculated voltage command value and a DC voltage from a voltage sensor. Under the conditions that the on-duty is influenced by a dead time and the DC voltage is smaller than a predetermined set value, the control device controls NPN transistors to step-up or step-down the voltage while fixing the on-duty at 1.0.
Owner:TOYOTA JIDOSHA KK

Ultrasonic Dental Tool

The present invention relates to ultrasonic dental tools having an integral sheath and at least one light source adapted to utilize the electromagnetic energy already available in the existing ultrasonic dental unit. The handpiece includes a substantially hollow housing having a primary power source that may include a coil. In one aspect, the ultrasonic dental insert includes a sheath. The sheath may be formed such that it may cover at least part of the handpiece housing. In general, the sheath may serve as a barrier such that it may reduce cross-contamination to and from the patient's mouth. During operation, the primary coil of the handpiece may be inductively coupled to an illumination energy coil such that the illumination energy coil may draw energy from the electromagnetic field of the primary coil to power at least one light emitting element.
Owner:DISCUS DENTAL LLC

Fuel cell stack

In a polymer electrolyte fuel cell stack, cooling water which is used to cool a cell and which flows through a cooling water emission manifold is made to flow into an end plate and into a practically sigmoidal contiguous stack end passage provided in an upper area of the end plate corresponding to a high-temperature area of the cell. The temperature of cooling water flowing from a cell at the stack end to the cooling water emission manifold is maintained constant by a flow rate control element.
Owner:SANYO ELECTRIC CO LTD

Phase detection circuit, resolver/digital converter using the circuit, and control system using the converter

A small-sized and low-cost phase detection circuit which has improved noise immunity. The phase detection circuit comprises a multiplier for multiplying an input signal by a reference signal and outputting a first signal, an integration circuit for integrating the first signal and outputting a second signal, a phase estimation circuit for estimating phase information based on the second signal, and a reference signal generation circuit for generating the reference signal based on the estimated phase information. Since the phase is detected based on information representing an entire waveform, the influence of local noise can be diluted and noise immunity can be improved.
Owner:HITACHI ASTEMO LTD

Voltage conversion device and computer-readable recording medium with program recorded thereon for computer to execute control of voltage conversion by voltage conversion device

A control device calculates a voltage command value of a voltage step-up converter based on a torque command value and a motor revolution number and calculates the on-duty of an NPN transistor based on the calculated voltage command value and a DC voltage from a voltage sensor. Under the conditions that the on-duty is influenced by a dead time and the DC voltage is smaller than a predetermined set value, the control device controls NPN transistors to step-up or step-down the voltage while fixing the on-duty at 1.0.
Owner:TOYOTA JIDOSHA KK

Electro-optical device and electronic apparatus

An electro-optical device includes red, green, and blue sub pixels and red, green, and blue data lines connected to the corresponding sub pixels. Red, green, and blue sampling switches are provided in a peripheral region and are electrically connected to data lines of the corresponding color. The green sampling switch is located at a position that is closer to the pixel region than are the red or blue sampling switches.
Owner:SEIKO EPSON CORP

Semiconductor Device and Driving Method Thereof

To provide a semiconductor device, which is capable of supplying a stable voltage to a memory and communicating wirelessly in writing data into a memory, and a driving method thereof. The semiconductor device is operated with periods which are divided into a period for receiving a signal wirelessly from a reader / writer, and a period for boosting up electric power received wirelessly from the reader / writer before being supplied to the memory. The signals transmitted from the reader / writer include timing for completion of signal transmission as information. The timing for completion of signal transmission is known by receiving the signals. After completion of signal transmission from the reader / writer, electric power received from the reader / writer starts to be boosted up, and then it is supplied to the memory in the semiconductor device.
Owner:SEMICON ENERGY LAB CO LTD

Method and Apparatus for a Half-Bridge Variable Differential Transformer Position Sensing System

A half-bridge variable differential transformer position sensing system that includes a transducer having a stator with an inductive coil having a center tap configured to provide an output signal. The transducer also has an armature with a magnetically permeable core configured to move within the inductive coil, such that movement of the magnetically permeable core causes a change in the output signal. The position sensing system includes a first circuit configured to provide an excitation signal at one terminal of the inductive coil. The system includes no more than three electrical interface wires, and a microcontroller configured to calculate the degree of change in the position of the magnetically permeable core, and is configured to correct for variations in the voltage of the output signal due to the temperature of the transducer and due to non-linear effects on the output signal caused by movement of the magnetically permeable core.
Owner:WOODWARD MPC

Circuit for Low-Dropout Regulator Output

An output circuit at the output of an LDO regulator has two FETs (Field-Effect Transistors), a current source and a capacitor. The first FET is connected to the LDO output and a second voltage supply. The second FET is connected in series with the current source between the LDO output and the second voltage supply. The second FET is connected to the first FET in such a matter that a bias voltage is supplied to the first FET so that in static conditions the first FET draws predetermined amounts of current from the LDO output and to divert the predetermined amounts of current to the LDO output or to draw additional amounts of current from the LDO output to compensate for transient currents on the LDO output and to reduce variations in the output voltage of the LDO regulator. The capacitor with the current source defines a time constant to control the recovery of the output circuit from sudden drops or rises in voltage at the LDO regulator output to allow the LDO regulator to respond without adverse effect to the LDO output voltage.
Owner:SYNOPSYS INC

Liquid crystal display device

A liquid crystal display (LCD) device improves an aperture ratio and stabilizing a storage voltage, including a first substrate; a second substrate opposed to the first substrate; a liquid crystal layer between the first substrate and the second substrate; a gate line and a data line on the first substrate; a semiconductor layer overlapping the gate line; a first drain electrode overlapping the gate line and the semiconductor layer and connected to the data line; a first source electrode overlapping the gate line and the semiconductor layer; a first sub-pixel electrode connected to the first source electrode; a second drain electrode overlapping the gate line and the semiconductor layer and connected to the first drain electrode; a second source electrode overlapping the gate line and the semiconductor layer; and a second sub-pixel electrode connected to the second source electrode. The second source electrode overlaps the gate line more than the first source electrode does.
Owner:SAMSUNG DISPLAY CO LTD

Charge pump phase locked loop with improved power supply rejection

A phase lock loop circuit (60) has a phase frequency detector (62), a charge pump (64), an active filter (87) and a voltage-controlled oscillator (100). The phase detector generates signals responsive to reference signal FR and VCO output signal FV. A charge pump generates a voltage at the input of a first transmission gate (76) according to the values of the phase detector signals. A predetermined voltage is generated at the input of a second transmission gate (112). When the transmission gates (76, 110) are closed (low impedance) the charge pump may sink or source current to the inverting input of the operational amplifier (86) of the active filter 86 and the predetermined voltage is applied to the non-inverting input. When the transmission gates are open (high impedance state) the inverting input is electrically isolated from the node and the non-inverting output is isolated from the power supply.
Owner:TEXAS INSTR INC

Voltage variation reducing circuit and semiconductor device using the same

A voltage variation reducing circuit includes a first transistor and a second transistor. The first transistor is connected to a first power source line of a first power source voltage at a source and a second power source line of a second power source voltage at a drain and a gate. The second transistor is connected to a third power source line of a third power source voltage higher than the second power source voltage at a source and the second power source line at a drain gate.
Owner:RENESAS ELECTRONICS CORP

Passive-matrix display and tiling display

A passive-matrix display of the disclosure includes a first electrode disposed over a substrate, a second electrode disposed over the first electrode and three-dimensionally intersecting the first electrode, a first auxiliary electrode disposed between the substrate and the first electrode, three-dimensionally intersecting the first electrode and being parallel to the second electrode, and a second auxiliary electrode parallel to the first auxiliary electrode and to the second electrode, the first electrode and the first auxiliary electrode being electrically connected by a first connection portion, and the second electrode and the second auxiliary electrode being connected by a plurality of second connection portions each disposed with at least one of the first electrodes therebetween. The passive-matrix display enables voltage drop and variation in brightness to be reduced by lowering the wiring resistance of the second electrode.
Owner:SAMSUNG DISPLAY CO LTD

Liquid lens and apparatus incorporating the same

A liquid lens includes a vessel having an inner wall and configured to contain liquid, an electrolyte liquid and a non-electrolyte liquid forming an interface therebetween and being contained in the vessel, and a voltage applying unit which applies a voltage to the electrolyte liquid. A shape of the interface between the electrolyte liquid and the non-electrolyte liquid is changed by application of the voltage. The inner wall of the vessel has varying affinity with the non-electrolyte liquid depending on a position on the inner wall where an end of the interface contacts the inner wall; and the affinity on the side of the inner wall where the non-electrolyte liquid is situated is lower than the affinity on the side of the inner wall where the electrolyte liquid is situated.
Owner:CANON KK

Light emitting display device and method for driving the same

A light emitting display device and a method for driving the same are disclosed. Each pixel of the light emitting display device includes: a light emitting element that emits light in response to a drive current based on a gray-scale current on the associated data line; a first switching element that supplies the drive current to the light emitting element; a first voltage line that supplies a first voltage to a source electrode of the first switching element; a second switching element connected with the first switching element that forms a current mirror with the first switching element; a second voltage line that supplies a second voltage of the second switching element; and a voltage supply circuit that divides the first voltage from the first voltage line and the second voltage from the second voltage line and supplyies the resulting voltage to a source electrode of the second switching element.
Owner:LG DISPLAY CO LTD

Electro-optical device and electronic apparatus

An electro-optical device includes red, green, and blue sub pixels and red, green, and blue data lines connected to the corresponding sub pixels. Red, green, and blue sampling switches are provided in a peripheral region and are electrically connected to data lines of the corresponding color. The green sampling switch is located at a position that is closer to the pixel region than are the red or blue sampling switches.
Owner:SEIKO EPSON CORP

Light emitting display device and method for driving the same

A light emitting display device and a method for driving the same are disclosed. Each pixel of the light emitting display device includes: a light emitting element that emits light in response to a drive current based on a gray-scale current on the associated data line; a first switching element that supplies the drive current to the light emitting element; a first voltage line that supplies a first voltage to a source electrode of the first switching element; a second switching element connected with the first switching element that forms a current mirror with the first switching element; a second voltage line that supplies a second voltage of the second switching element; and a voltage supply circuit that divides the first voltage from the first voltage line and the second voltage from the second voltage line and supplies the resulting voltage to a source electrode of the second switching element.
Owner:LG DISPLAY CO LTD

Fuel cell system and method of controlling the same

ActiveUS20190140294A1Reduces amount of variationQuickly respondFuel cell controlAutomotive engineeringGas supply
A fuel cell system includes a fuel cell stack, a compressor that supplies cathode gas to the fuel cell stack, and a controller that controls constituent components of the fuel cell system including the compressor. The controller controls the compressor, such that a supply period in which the compressor supplies the cathode gas and a stop period in which supply of the cathode gas is stopped appear alternately, when the fuel cell stack is not required to generate electric power, and the supply period is longer than the stop period, and such that the flow rate of the cathode gas supplied by the compressor in the supply period is smaller than the flow rate in the case where the fuel cell stack is required to generate electric power.
Owner:TOYOTA JIDOSHA KK

Display device and method for driving the same

There is adopted a gate driver with a system of applying a direct current voltage as an active scanning signal to a gate bus line through a buffer transistor in a unit circuit that composes a shift register, and a display device is provided with a direct current voltage generation circuit that generates the direct current voltage. The direct current voltage generation circuit changes a voltage level of the direct current voltage in each frame period. For example, when a direct current voltage input terminal is provided on a vertical scanning end side, the direct current voltage generation circuit gradually decreases the voltage level of the direct current voltage in each frame period.
Owner:SHARP KK

Fuel cell system and method of controlling the same

ActiveUS20190140290A1Less likely and unlikely to excessively riseReduce the amount of variationReactant parameters controlFuel cell controlFuel cellsEngineering
A fuel cell system includes a cathode gas supply passage through which cathode gas is supplied to the fuel cell stack, a cathode gas discharge passage through which the cathode gas is discharged from the fuel cell stack, a turbo compressor provided in the cathode gas supply passage for delivering the cathode gas to the fuel cell stack, a valve provided in the cathode gas supply passage or the cathode gas discharge passage, and a controller that controls constituent components of the fuel cell system including the turbo compressor and the valve. The controller performs cathode-gas flow rate change control to alternately open and close the valve, in a condition where the turbo compressor is driven, when the fuel cell stack is not required to generate electric power.
Owner:TOYOTA JIDOSHA KK

Temperature computing parameter providing circuit, temperature computing parameter providing method and temperature monitoring method

A temperature computing parameter providing circuit, configured to generate sensing voltage values and calibrated voltage values as temperature computing parameters for a target electronic device, including: a parameter computing circuit, configured to compute a reference voltage, which is a cross voltage of a reference resistor coupled to the target electronic device in series, to generate a reference voltage value, and to compute the sensing voltage, which is a cross voltage of the target electronic device, to generate the sensing voltage value; a reference temperature sensing circuit, configured to sense a current reference temperature of the reference resistor; and a computing circuit, configured to calibrate the reference voltage value to generate the calibrated voltage value according to a calibrating function and the current reference temperature. The calibrating function corresponds to a resistance-temperature variation function.
Owner:REALTEK SEMICON CORP

Semiconductor device, liquid discharge head, liquid discharge head cartridge, and printing apparatus

A semiconductor device is provided. The device comprises discharge units each including a discharge element and a driving unit configured to drive the discharge element, and a terminal unit configured to supply a power supply to the discharge units via a wiring line. The discharge units includes a first discharge unit including a first discharge element of the discharge elements and a first driving unit of the driving units and a second discharge unit including a second discharge element of the discharge elements and a second driving unit of the driving units. A length of a current path from the terminal unit to the first discharge unit is larger than a length of a current path from the terminal unit to the second discharge unit and a resistance of the first driving unit is lower than a resistance of the second driving unit.
Owner:CANON KK

Method of inspecting power storage device and method of producing the same

A circuit is formed by connecting positive terminals and negative terminals of a power storage device and an external power supply, and a resistor and a switch are arranged in series between a positive-side conductor and a negative-side conductor. An ON time for which the switch is temporarily closed before start of inspection is made longer as the capacity of the power storage device is larger. An ON voltage between the positive-side and negative-side conductors within the ON time, and an OFF voltage between these conductors at a time other than the ON time are obtained, and a parasitic resistance value of the circuit is calculated based on the ON and OFF voltages and a resistance value of the resistor. During the inspection, the voltage of the external power supply, which is applied to the power storage device, is increased according to the parasitic resistance value.
Owner:TOYOTA JIDOSHA KK
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products