Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

57results about How to "Shorten the optical path length" patented technology

Truncated pyramid structures for see-through solar cells

InactiveUS20100116316A1Low-cost metallurgical-gradeReduce effect of impurityPV power plantsSemiconductor/solid-state device manufacturingEngineeringSunlight
The present disclosure presents a partially-transparent (see-through) three-dimensional thin film solar cell (3-D TFSC) substrate. The substrate includes a plurality of unit cells. Each unit cell structure has the shape of a truncated pyramid, and its parameters may be varied to allow a desired portion of sunlight to pass through.
Owner:BEAMREACH SOLAR INC

Image reading device and method of scaling up or down image to be read

An image reading device is provided which is capable of obtaining an image with satisfactory definition without causing an increase in the number of reading pixels and with reduction in costs. Mirror driving sections change a length of an optical path between an original document and a lens to change a scaling factor of an image to be formed on an image sensor. When high-density reading of a small-sized original document rendering a narrow reading range is required, specified mirrors are rotated to prevent light from travelling through a mirror so as to guide the light into a lens with the decreased number of times of reflection by mirrors occurring during a time period before the light reaches a lens and so that a length of an optical path is shortened, which enables an image, to be formed on an image sensor, to be enlarged.
Owner:NEC CORP

Catoptric imaging systems comprising pellicle and/or aperture-array beam-splitters and non-adaptive and/or adaptive catoptric surfaces

An interferometry system including: a first imaging system that directs a measurement beam at an object to produce a return measurement beam from the object, that directs the return measurement beam onto an image plane, and that delivers a reference beam to the image plane; and a beam combining element in the image plane, said beam combining element comprising a first layer containing an array of sagittal slits and a second layer containing an array of tangential slits, wherein each slit of the array of sagittal slits is aligned with a corresponding different slit of the array of tangential slits, wherein the beam combining element combines the return measurement beam with the reference beam to produce an array of interference beams.
Owner:ZETETIC INST

Off axis optical signal redirection architectures

The present invention is directed to off axis optical signal redirection architectures that employ positionable reflective microstructures (e.g. microelectromechanical (MEM) mirrors) fabricated on one or more substrates. In one embodiment, an optical signal redirection system (10) includes a reflective microstructure array (12) formed on a substrate (30). The reflective microstructure array (12) includes one or more reflective microstructures (14). Each of the reflective microstructures (14) includes an optically reflective surface (20) and is positionable with respect to the substrate (30) in order to orient its reflective surface (20) for redirecting optical signals (24) incoming from one or more originating locations (16) to one or more target locations (18). Each orientation required for a given reflective microstructure (14) to redirect an optical signal (24) incoming from an originating location (16) to a target location (18) is defined by a unit vector (22) that is normal to the reflective surface (20) of such reflective microstructure (14). An average normal vector (26) associated with the reflective microstructure array (12) defined as the average of the set of individual unit normal vectors (22) forms a first non-zero angle θ with respect to the substrate normal (34).
Owner:NEOPHOTONICS CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products