Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

346results about How to "Lower refractive index" patented technology

Microstructured optical fibers and methods

Microstructured optical fiber and method of making. Glass soot is deposited and then consolidated under conditions which are effective to trap a portion of the consolidation gases in the glass to thereby produce a non-periodic array of voids which may then be used to form a void containing cladding region in an optical fiber. Preferred void producing consolidation gases include nitrogen, argon, CO2, oxygen, chlorine, CF4, CO, SO2 and mixtures thereof.
Owner:CORNING INC

Curved liquid crystal display panel and curved display device having the same

ActiveUS20140055696A1Refractive index difference be decreaseResponse speed be increaseStatic indicating devicesNon-linear opticsCurve shapeLiquid-crystal display
A curved liquid crystal display panel includes an upper substrate having a curved shape, a liquid crystal layer, a lower substrate having a curved shape, where the lower substrate is combined with the upper substrate and the liquid crystal layer is disposed between the upper substrate and the lower substrate, and a heating line disposed on at least one of the upper substrate and the lower substrate and which provides heat to the liquid crystal layer such that a temperature of the liquid crystal layer increases.
Owner:SAMSUNG DISPLAY CO LTD

Method of making solar cell/module with porous silica antireflective coating

InactiveUS20070074757A1Improved anti-reflection (AR) coatingReduce reflectionCoatingsPhotovoltaic energy generationColloidal silicaAnti-reflective coating
A solar cell includes an improved anti-reflection (AR) coating provided on an incident glass substrate. In certain example embodiments, the AR coating includes a layer comprising porous silica. The porous nature of the silica inclusive layer permits the refractive index (n) of the silica inclusive layer to be reduced, thereby decreasing reflection and permitting more radiation to make its way to the active layer(s) of the solar cell. In certain example embodiments, a coating solution may be formed by mixing a colloidal silica solution and a polymeric silica solution, then applying the coating solution to a substrate and curing the same in order to form an AR coating.
Owner:GUARDIAN GLASS LLC

Optical fiber

An optical fiber includes: a core at a center; a first cladding layer; a second cladding layer; and a third cladding layer. A maximum refractive index of the core is greater than any of maximum refractive indices of the first cladding layer, the second cladding layer, and the third cladding layer, and the maximum refractive index of the second cladding layer is smaller than any of the maximum refractive indices of the first and the third cladding layer. Additionally, a ratio of a2 / a1 is not less than about 2.5 and not more than about 4.5, where a1 represents the radius of the core, and a2 represents the radius of an outer periphery of the first cladding layer, and a relative refractive index difference of the core with respect to a maximum refractive index of the third cladding layer is not less than 0.20% and not more than 0.70%.
Owner:THE FUJIKURA CABLE WORKS LTD

Vertical gallium-nitride based light emitting diode

A vertical GaN-based LED includes: an n-electrode; a light-emitting structure in which an n-type GaN layer, an active layer, and a p-type GaN layer are sequentially formed under the n-electrode; a p-electrode formed under the light-emitting structure; a passivation layer formed to cover the side and bottom surfaces of the light-emitting structure and expose a predetermined portion of the p-electrode, the passivation layer being formed of a distributed Bragg reflector (DBR); a plating seed layer formed under the passivation layer and the p-electrode; and a support layer formed under the plating seed layer.
Owner:SAMSUNG ELECTRONICS CO LTD

Nano-structured thin film with reduced light reflection

The present invention is directed to a multilayer optical film, for use in a display or component thereof, comprising a substrate having a topmost layer that is an anti-reflective layer having a nano-structured surface, the layer comprising elongated-shaped silica particles. Another aspect of the present invention relates to a method of forming the single anti-reflective layer and its use in various applications including displays and components thereof.
Owner:EASTMAN KODAK CO

Film having low refractive index film and method for producing the same, Anti-relection film and method for producing the same, coating liquid set for low refractive index film, substrate having microparticle-laminated thin film and method for producing the same, and optical member

Provided is a film having a low refractive index, which can be formed under normal temperature and pressure while obtaining a lower refractive index, has excellent adhesion with a solid substrate, and does not lose geometric optical properties, such as the diffusibility or light-harvesting capability attributed to the microstructure. Also disclosed is a method for producing the same. The film having a low refractive index is obtained by causing an electrolyte polymer and microparticles to be alternately adsorbed on the surface of a solid substrate and bringing the resulting microparticle-laminated film into contact with a silicon compound solution in order to bond the solid substrate with microparticles and microparticles with microparticles. The silicon compound solution is selected from (1) the hydrolysis product of alkoxysilane (I) wherein the functional groups are formed from hydrolyzable groups and non-hydrolyzable organic groups, and the condensation reaction product thereof, (2) the hydrolysis product of a mixture of alkoxysilane (I) and alkoxysilane (II) wherein the functional groups are formed from hydrolyzable groups alone, and the condensation reaction product thereof; and (3) a mixture of hydrolysis product and condensation product thereof according to (1) and alkoxysilane (II).
Owner:RESONAC CORP

Phototherapy mask

A phototherapy mask uses optical fibers coupled to LEDs to irradiate a treated epidermal skin area on or around a person's face with specific wavelengths of light in selected dosages (J / cm2). Peripheral configuration of LEDs on the mask eliminates problems of heat dissipation, and multi-mode optical fiber is employed for diffusion of light uniformly over the treated epidermal skin area.
Owner:FRANCIS STACY

Group III nitride light emitting devices with gallium-free layers

The present invention is a semiconductor structure for light emitting devices that can emit in the red to ultraviolet portion of the electromagnetic spectrum. The semiconductor structure includes a first cladding layer of a Group III nitride, a second cladding layer of a Group III nitride, and an active layer of a Group III nitride that is positioned between the first and second cladding layers, and whose bandgap is smaller than the respective bandgaps of the first and second cladding layers. The semiconductor structure is characterized by the absence of gallium in one or more of these structural layers.
Owner:CREE INC

Optical devices with engineered nonlinear nanocomposite materials

The invention relates to an optical device. The optical device comprises a waveguide core and a nanocomposite material optically coupled to the waveguide core. The nanocomposite material includes a plurality of quantum dots. The nanocomposite material has a nonlinear index of refraction γ that is at least 10−9 cm2 / W when irradiated with an activation light having a wavelength λ between approximately 3×10−5 cm and 2×10−4 cm.
Owner:SAMSUNG ELECTRONICS CO LTD

Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus

A solid-state imaging device includes a light-receiving portion, which serves as a pixel, and a waveguide, which is disposed at a location in accordance with the light-receiving portion and which includes a clad layer and a core layer embedded having a refractive index distribution in the wave-guiding direction.
Owner:SONY CORP

Photodiode array

A photodiode array 1 has a plurality of photodetector channels 10 which are formed on an n-type substrate 2 having an n-type semiconductor layer 12, with a light to be detected being incident to the plurality of photodetector channels 10. The photodiode array 1 comprises: a p−-type semiconductor layer 13 formed on the n-type semiconductor layer 12 of the substrate 2; resistors 4 each of which is provided to each of the photodetector channels 10 and is connected to a signal conductor 3 at one end thereof; and an n-type separating part 20 formed between the plurality of photodetector channels 10. The p−-type semiconductor layer 13 forms a pn junction at the interface between the substrate 2, and comprises a plurality of multiplication regions AM for avalanche multiplication of carriers produced by the incidence of the light to be detected so that each of the multiplication regions corresponds to each of the photodetector channels. The separating part 20 is formed so that each of the multiplication regions AM of the p−-type semiconductor layer 13 corresponds to each of the photodetector channels 10.
Owner:HAMAMATSU PHOTONICS KK

Film, Manufacturing Method Thereof, Polarization Plate Using the Film, and Liquid Crystal, and Display Device Using the Polarizing Plate

InactiveUS20080137206A1Improving dazzlingSuppressing whiteningPolarising elementsCoatingsDisplay devicePolarizer
A film comprises: a transparent support; and an anti-glare layer having a haze value due to internal scattering of from 0 to 40% and a haze value due to surface scattering of from 0.3 to 20%.
Owner:FUJIFILM CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products