Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

278results about How to "Depth accurate" patented technology

3D graphics rendering system for performing Z value clamping in near-Z range to maximize scene resolution of visually important Z components

A graphics system including a custom graphics and audio processor produces exciting 2D and 3D graphics and surround sound. The system includes a graphics and audio processor including a 3D graphics pipeline and an audio digital signal processor. The graphics pipeline performs Z-buffering and optionally provides memory efficient full scene anti-aliasing (FSAA). When the anti-aliasing rendering mode is selected, Z value bit compression is performed to more efficiently make use of the available Z buffer memory. A Z-clamping arrangement is used to improve the precision of visually important Z components by clamping Z values to zero of pixels that fall within a predetermined Z-axis range near the Z=0 eye / camera (viewport) plane. This allows a Z-clipping plane to be used very close to the eye / camera plane--to avoid undesirable visual artifacts produced when objects rendered near to the eye / camera plane are clipped--while preserving Z value precision for the remaining depth of the scene. In an example implementation, a Z value compression circuit provided in the graphics pipeline is enhanced to effectuate Z-clamping within the predetermined range of Z values. The enhanced circuitry includes an adder for left-shifting an input Z value one or more bits prior to compression and gates for masking out the most significant non-zero shifted bits to zero.
Owner:NINTENDO CO LTD

3D motion recognition method and apparatus

Disclosed are a three-dimensional motion recognition method and an apparatus using a motion template method and an optical flow tracking method of feature points. The three dimensional (3D) motion recognition method through feature-based stereo matching according to an exemplary embodiment of the present disclosure includes: obtaining a plurality of images from a plurality of cameras; extracting feature points from a single reference image; and comparing and tracking the feature points of the reference image and another comparison image photographed at the same time using an optical flow method.
Owner:ELECTRONICS & TELECOMM RES INST

Methods and Apparatus for Coded Time-of-Flight Camera

In illustrative implementations, a time-of-flight camera robustly measures scene depths, despite multipath interference. The camera emits amplitude modulated light. An FPGA sends at least two electrical signals, the first being to control modulation of radiant power of a light source and the second being a reference signal to control modulation of pixel gain in a light sensor. These signals are identical, except for time delays. These signals comprise binary codes that are m-sequences or other broadband codes. The correlation waveform is not sinusoidal. During measurements, only one fundamental modulation frequency is used. One or more computer processors solve a linear system by deconvolution, in order to recover an environmental function. Sparse deconvolution is used if the scene has only a few objects at a finite depth. Another algorithm, such as Wiener deconvolution, is used is the scene has global illumination or a scattering media.
Owner:MASSACHUSETTS INST OF TECH

Image processing device, image processing method, and imaging device

A depth map generation unit (15) generates a depth map through a matching process using a first image generated by a first imaging unit which has a pixel configuration including pixels having different polarization directions and a second image generated by a second imaging unit which has a different pixel configuration from the pixel configuration of the first imaging unit. A normal-line map generation unit (17) generates a normal-line map based on a polarization state of a polarized image of at least one of the first and second images. A map unifying unit (19) performs a process of unifying the generated depth map and the generated normal-line map and acquires an image in which the number of pixels is not reduced while generating the depth map with precision equal to or greater than the generated depth map. The image in which the number of pixels is not reduced can be acquired while generating the highly precise depth map.
Owner:SONY CORP

Compact array of imaging devices with supplemental imaging unit

A method and system are described. The method includes capturing a set of images from a 2×2 array of cameras, each camera of the array of cameras having an overlapping field of view (FOV) with an adjacent camera of the array of cameras. The method further includes synchronously capturing a supplemental image from a fifth camera, the fifth camera having an at least partially overlapping FOV with every camera of the array of cameras. Supplemental information is extracted by comparing the supplemental image with the set of four images. Portions of the set of images are stitched based in part on the supplemental information to produce a combined stitched image, the combined stitched image having a higher resolution than each image of the set of images
Owner:GOPRO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products