Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2026results about "Navigation by astronomical means" patented technology

Device for concentrating optical radiation

A holographic planar concentrator (HPC) for collecting and concentrating optical radiation is provided. The holographic planar concentrator comprises a planar highly transparent plate and at least one multiplexed holographic optical film mounted on a surface thereof. The multiplexed holographic optical film has recorded therein a plurality of diffractive structures having one or more regions which are angularly and spectrally multiplexed. Two or more of the regions may be configured to provide spatial multiplexing. The HPC is fabricated by: (a) recording the plurality of diffractive structures in the multiplexed holographic optical film employing angular, spectral, and, optionally, spatial multiplexing techniques; and (b) mounting the multiplexed holographic optical film on one surface of the highly transparent plate. The recording of the plurality of diffractive structures is tailored to the intended orientation of the holographic planar concentrator to solar energy. The HPC is mounted in the intended orientation for collecting solar energy and at least one solar energy-collecting device is mounted along at least one edge of the holographic planar concentrator. Examples of suitable solar energy-collecting devices include photovoltaic cells and fiber optic light guides for transmitting collected light into an interior of a building for illumination purposes and for transmitting collected solar radiation into a hot water tank for heating. The HPC permits efficient collection of solar energy without expensive requirements, while minimizing energy losses.
Owner:ILLINOIS INSTITUTE OF TECHNOLOGY

Solid state optical phased array lidar and method of using same

A lidar-based apparatus and method are used for the solid state steering of laser beams using Photonic Integrated Circuits. Integrated optic design and fabrication micro- and nanotechnologies are used for the production of chip-scale optical splitters that distribute an optical signal from a laser essentially uniformly to an array of pixels, said pixels comprising tunable optical delay lines and optical antennas. Said antennas achieve out-of-plane coupling of light.As the delay lines of said antenna-containing pixels in said array are tuned, each antenna emits light of a specific phase to form a desired far-field radiation pattern through interference of these emissions. Said array serves the function of solid state optical phased array.By incorporating a large number of antennas, high-resolution far-field patterns can be achieved by an optical phased array, supporting the radiation pattern beam forming and steering needed in solid state lidar, as well as the generation of arbitrary radiation patterns as needed in three-dimensional holography, optical memory, mode matching for optical space-division multiplexing, free space communications, and biomedical sciences. Whereas imaging from an array is conventionally transmitted through the intensity of the pixels, the optical phased array allows imaging through the control of the optical phase of pixels that receive coherent light waves from a single source.
Owner:QUANERGY SOLUTIONS INC

Remote high-precision independent combined navigation locating method

The invention relates to a remote high precision autonomous integrated navigation and positioning method, which is characterized in that a Strapdown Inertial Navigation System (SINS) is used as a main navigation system during the whole flight course of the aircraft, assisted by 3D high precision position and attitude angle information provided by celestial navigation system (CNS) based on the least square differential correction in boost phase (or middle segment). In reentry phase (terminal), using the characteristics of synthetic aperture radar (SAR), such as strong penetration capability, high resolving precision and all-weather, the SINS can be corrected through accurate location information and course information provided by SAR scene matching after motion compensation when the aircraft reentry into atmospheres, so the impact point (hit) accuracy of the aircraft can be increased and the invention has remarkable effects of eliminating or decreasing non-guidance error. The invention has advantages of autonomy and high precision, which can be used for improving remote ballistic missile, remote cruise missile, navigation and positioning accuracy of remote aircraft, such as long-endurance unmanned aerial vehicle, etc.
Owner:BEIHANG UNIV

Navigation satellite autonomous navigation system and method based on X-ray pulsar

InactiveCN101038169AHigh precision autonomous navigationStable periodicityInstruments for comonautical navigationNavigation by astronomical meansFault toleranceInformation processing
A autonomous navigation system of a navigational satellite based on X radial pulse satellite includes: an X radial detector, an atomic clock group on the satellite, a planet of our solar system parameter database, an X radial pulsar module and a characteristic parameter database, a computer on the satellite, a strap-down inertial navigation system SINS and an autonomous navigation algorithm module library; in the autonomous navigation method, the X radial photons radiated from the pulsar are used as the input of the external information; the pulse arrival time TOA and the angular position information are obtained; data is processed through a autonomous navigation filter; and the navigational parameters such as the position, the speed, the time and the pose of the navigational satellite; the navigational telegraph text and the control command are generated independently, and the independent running of the navigational satellite is realized. The present invention has the advantages of providing a long time and a high degree of accuracy autonomous navigation, and providing the fault-tolerance capacity of the autonomous navigation information processing. The autonomous navigation system is also be adequate for the high degree of accuracy autonomous navigation of the near earth orbit, the deep space, the interplanetary flight space vehicle, the a celestial body lander without thickset atmosphere and the surface peripatetic machine.
Owner:BEIJING INST OF SPACECRAFT SYST ENG

Daytime stellar imager

An automatic celestial navigation system for navigating both night and day by observation of K-band or H-band infrared light from multiple stars. In a first set of preferred embodiments three relatively large aperture telescopes are rigidly mounted on a movable platform such as a ship or airplane with each telescope being directed at a substantially different portion of sky. Embodiments in this first set tend to be relatively large and heavy, such as about one cubic meter and about 60 pounds. In a second set of preferred embodiments one or more smaller aperture telescopes are pivotably mounted on a movable platform such as a ship, airplane or missile so that the telescope or telescopes can be pivoted to point toward specific regions of the sky. Embodiments of this second set are mechanically more complicated than those of the first set, but are much smaller and lighter and are especially useful for guidance of aircraft and missiles. Telescope optics focus (on to a pixel array of a sensor) H-band or K-band light from one or more stars in the field of view of each telescope. Each system also includes an inclinometer, an accurate timing device and a computer processor having access to catalogued infrared star charts. The processor for each system is programmed with special algorithms to use image data from the infrared sensors, inclination information from the inclinometer, time information from the timing device and the catalogued star charts information to determine positions of the platform. Direction information from two stars is needed for locating the platform with respect to the celestial sphere. The computer is also preferably programmed to use this celestial position information to calculate latitude and longitude which may be displayed on a display device such as a monitor or used by a guidance control system. These embodiments are jam proof and insensitive to radio frequency interference. These systems provide efficient alternatives to GPS when GPS is unavailable and can be used for periodic augmentation of inertial navigation systems.
Owner:TREX ENTERPRISES CORP

Sensor for determining the angular position of a radiating point source in two dimensions and method of operation

A sensor for determining the angular position of a radiating point source in two dimensions includes a mask encoded in two skewed directions with waveforms consisting of several frequencies in prescribed patterns. The frequency spectra of the received detector patterns are computed. In order to facilitate such computations, the constituent frequencies are separated so as to be distinguished in the Fast Fourier Transform (FFT). Each of the frequency patterns that are coded on the variable transmissivity mask consists of a series of low frequencies followed by a series of variable frequencies, and a series of high frequencies. The variable frequencies exhibit frequency changes responsive to various image positions. The low and high frequencies are responsive in phase to variations in image position. The frequency variations in the variable frequencies are used to indicate coarse position while the phases of the fixed low and high frequencies are used to indicate medium and fine position. In a second embodiment, the mask pattern is formed by a first pattern including low variable and high frequency components, a second pattern with fixed low and high frequency components, and a third pattern with variable frequency components. The method of determining position is also disclosed.
Owner:ASCENSION TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products