Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2348results about "Lyases" patented technology

Cells producing antibody compositions with increased antibody dependent cytotoxic activity

The present invention relates to a cell for the production of an antibody molecule such as an antibody useful for various diseases having high antibody-dependent cell-mediated cytotoxic activity, a fragment of the antibody and a fusion protein having the Fc region of the antibody or the like, a method for producing an antibody composition using the cell, the antibody composition and use thereof.
Owner:KYOWA HAKKO KIRIN CO LTD

Herbicide resistance in plants

InactiveUS6222100B1Confers resistanceEffectively combat weed problemBiocideSeed and root treatmentPlant tissueNovel gene
This invention is directed to the production of plants, plant tissues and seeds which are resistant to inhibition by an herbicide which normally inhibits the growth and development of those plants, plant tissues and plant seeds. In particular this invention is directed to altered acetohydroxyacid synthase enzymes which are resistant to inhibition by herbicides which normally inhibit the activity of the synthase before such alteration. This invention further relates to genes encoding such enzymes, and to processes for utilizing these novel genes and enzymes. Further products of the invention include plants, plant tissues and seeds which exhibit resistance to such herbicides resulting from expression of genes encoding herbicide resistant acetohydroxyacid synthase enzyme.
Owner:MGI PHARMA

Maize chloroplast aldolase promoter compositions and methods for use thereof

The current invention provides the promoter of the Zea mays nuclear gene encoding chloroplast-localized fructose-1,6-bisphosphate (F16BP) aldolase. Compositions comprising this sequence are described, as are plants transformed with such compositions. Further provided are methods for the expression of transgenes in plants comprising the use of these sequences. The methods of the invention include the direct creation of transgenic plants with the chloroplastic F16BP aldolase promoter by genetic transformation, as well as by plant breeding methods. The sequences of the invention represent a valuable new tool for the creation of transgenic plants, preferably having one or more added beneficial characteristics.
Owner:MONSANTO TECH LLC

Anthranilate synthase gene and method of use thereof for conferring tryptophan overproduction

The present invention provides a method for conferring tolerance to an amino acid analog of tryptophan to a plant and / or altering the tryptophan content of a plant by introducing and expressing an isolated DNA segment encoding an anthranilate synthase in the cells of the plant. Transgenic plants transformed with an isolated DNA segment encoding an anthranilate synthase, as well as seeds and progeny derived from these plants, are also provided. The present invention also provides a cDNA sequence of an alpha and a beta subunit of a maize anthranilate synthase.
Owner:MONSANTO TECH LLC

Product and process for transformation of Thraustochytriales microorganisms

Disclosed are nucleic acid and amino acid sequences for acetolactate synthase, acetolactate synthase regulatory regions, α-tubulin promoter, a promoter from a Thraustochytriales polyketide synthase (PKS) system, and fatty acid desaturase promoter, each from a Thraustochytriales microorganism. Also disclosed are recombinant vectors useful for transformation of Thraustochytriales microorganisms, as well as a method of transformation of Thraustochytriales microorganisms. The recombinant nucleic acid molecules of the present invention can be used for the expression of foreign nucleic acids in a Thraustochytriales microorganism as well as for the deletion, mutation, or inactivation of genes in Thraustochytriales microorganisms.
Owner:DSM IP ASSETS BV

Fermentive production of four carbon alcohols

Methods for the fermentive production of four carbon alcohols are provided. Specifically, butanol, preferably 2-butanol is produced by the fermentive growth of a recombinant bacteria expressing a 2-butanol biosynthetic pathway. The recombinant microorganisms and methods of the invention can also be adapted to produce 2-butanone, an intermediate in the 2-butanol biosynthetic pathways disclosed herein.
Owner:GEVO INC

Fermentive production of four carbon alcohols

Methods for the fermentive production of four carbon alcohols are provided. Specifically, butanol, preferably 2-butanol is produced by the fermentive growth of a recombinant bacteria expressing a 2-butanol biosynthetic pathway. The recombinant microorganisms and methods of the invention can also be adapted to produce 2-butanone, an intermediate in the 2-butanol biosynthetic pathways disclosed herein.
Owner:GEVO INC

Bioconversion of a fermentable carbon source to 1,3-propanediol by a single microorganism

A new polypropylene terephthalate composition is provided. The polypropylene terephthalate is comprised of 1,3-propanediol and terephthalate. The 1,3-propanediol is produced by the bioconversion of a fermentatble carbon source, preferable glucose. The resulting polypropylene terephthalate is distinguished from petrochemically produced polymer on the basis of dual carbon-isotopic fingerprinting which indicates both the source and the age of the carbon.
Owner:EI DU PONT DE NEMOURS & CO +1

Enhanced pyruvate to acetolactate conversion in yeast

ActiveUS20090305363A1Improve throughputReduction of pyruvate decarboxylase activityFungiTransferasesYeastCytosol
A high flux in conversion of pyruvate to acetolactate was achieved in yeast through expression of acetolactate synthase in the cytosol in conjunction with reduction in pyruvate decarboxylase activity. Additional manipulations to improve flux to acetolactate are reduced pyruvate dehydrogenase activity and reduced glycerol-3-phosphate dehydrogenase activity. Production of compounds having acetolactate as an upstream intermediate benefit from the increased conversion of pruvate to acetolactate in the described strains.
Owner:GEVO INC

Methods to confer herbicide resistance

Compositions and methods for conferring herbicide resistance to plant cells and bacterial cells are provided. The methods comprise transforming the cells with nucleotide sequences encoding herbicide resistance genes. In particular, herbicide resistance is conferred by expression of proteins with homology to decarboxylase enzymes. Compositions comprise transformed plants, plant tissues, and seeds, as well as transformed bacterial cells.
Owner:ATHENIX

Polyhydroxyalkanoates of narrow molecular weight distribution prepared in transgenic plants

Methods for the biosynthesis of polyhydroxyalkanoate homopolymers and copolymers are described. In a preferred embodiment, the polymers have a single mode molecular weight distribution, and more preferably have a distribution of between about 2 and about 4, and most preferably about 2.1 or 2.5.
Owner:METABOLIX

GDC-1 genes conferring herbicide resistance

Compositions and methods for conferring herbicide resistance to plants, plant cells, tissues and seeds are provided. Compositions comprising a coding sequence for a polypeptide that confers resistance or tolerance to glyphosate herbicides are provided. The coding sequences can be used in DNA constructs or expression cassettes for transformation and expression in plants. Compositions also comprise transformed plants, plant cells, tissues, and seeds. In particular, isolated nucleic acid molecules corresponding to glyphosate resistant nucleic acid sequences are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed. In particular, the present invention provides for isolated nucleic acid molecules comprising nucleotide sequences encoding an amino acid sequence shown in SEQ ID NO:3, 6, 8, 11, 19, or 21, or a nucleotide sequence set forth in SEQ ID NO:1, 2, 4, 5, 7, 9, 10, 18, or 20, as well as variants and fragments thereof.
Owner:ATHENIX

GDC-2 genes conferring herbicide resistance

Compositions and methods for conferring herbicide resistance to plants, plant cells, tissues and seeds are provided. Compositions comprising a coding sequence for a polypeptide that confers resistance or tolerance to glyphosate herbicides are provided. The coding sequences can be used in DNA constructs or expression cassettes for transformation and expression in plants. Compositions also comprise transformed plants, plant cells, tissues, and seeds. In particular, isolated nucleic acid molecules corresponding to glyphosate resistant nucleic acid sequences are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed. In particular, the present invention provides for isolated nucleic acid molecules comprising nucleotide sequences encoding the amino acid sequence shown in SEQ ID NO:3 or the nucleotide sequences set forth in SEQ ID NOS:1 and 2.
Owner:ATHENIX

Glycerol Feedstock Utilization for Oil-Based Fuel Manufacturing

The invention provides methods of manufacturing biodiesel and other oil-based compounds using glycerol and combinations of glycerol and other feedstocks as an energy source in fermentation of oil-bearing microorganisms. Methods disclosed herein include processes for manufacturing high nutrition edible oils from non-food feedstock materials such as waste products from industrial waste transesterification processes. Also included are methods of increasing oil yields by temporally separating glycerol and other feedstocks during cultivation processes. Also provided herein are oil-bearing microbes containing exogenous oil production genes and methods of cultivating such microbes on glycerol and other feedstocks.
Owner:TERRAVIA HLDG INC

Herbicide resistance in plants

InactiveUS6211438B1Confers resistanceEffectively combat weed problemMutant preparationVector-based foreign material introductionPlant tissueNovel gene
This invention is directed to the production of plants, plant tissues and seeds which are resistant to inhibition by an herbicide which normally inhibits the growth and development of those plants, plant tissues and plant seeds. In particular this invention is directed to altered acetohydroxyacid synthase enzymes which are resistant to inhibition by herbicides which normally inhibit the activity of the synthase before such alteration. This invention further relates to genes encoding such enzymes, and to processes for utilizing these novel genes and enzymes. Further products of the invention include plants, plant tissues and seeds which exhibit resistance to such herbicides resulting from expression of genes encoding herbicide resistant acetohydroxyacid synthase enzyme.
Owner:MGI PHARMA

Herbicide resistance in plants

InactiveUS6211439B1Confers resistanceEffectively combat weed problemLyasesPlant genotype modificationPlant tissuePlanting seed
This invention is directed to the production of plants, plant tissues and seeds which are resistant to inhibition by an herbicide which normally inhibits the growth and development of those plants, plant tissues and plant seeds. In particular this invention is directed to altered acetohydroxyacid synthase enzymes which are resistant to inhibition by herbicides which normally inhibit the activity of the synthase before such alteration. This invention further relates to genes encoding such enzymes, and to processes for utilizing these novel genes and enzymes. Further products of the invention include plants, plant tissues and seeds which exhibit resistance to such herbicides resulting from expression of genes encoding herbicide resistant acetohydroxyacid synthase enzyme.
Owner:MGI PHARMA

Compositions providing tolerance to multiple herbicides and methods of use thereof

Methods and compositions are provided related to improved plants that are tolerant to more than one herbicide. Particularly, the invention provides plants that are tolerant of glyphosate and are tolerant to at least one ALS inhibitor, and methods of use thereof. The glyphosate / ALS inhibitor-tolerant plants comprise a polynucleotide that encodes a polypeptide that confers tolerance to glyphosate and a polynucleotide that encodes an ALS inhibitor-tolerant polypeptide. In specific embodiments, a plant of the invention expresses a GAT polypeptide and an HRA polypeptide. Methods to control weeds, improve plant yield, and increase transformation efficiencies are provided.
Owner:PIONEER HI BRED INT INC +1

Cotton promoter

A promoter isolated from a cotton gene encoding the small subunit of ribulose bisphosphate carboxylase is described. The isolated promoter is operably linked to a coding sequence of interest to make a chimeric gene.
Owner:NOVARTIS FINANCE

Fermentive production of four carbon alcohols

Methods for the fermentive production of four carbon alcohols are provided. Specifically, butanol, preferably 2-butanol is produced by the fermentive growth of a recombinant bacteria expressing a 2-butanol biosynthetic pathway. The recombinant microorganisms and methods of the invention can also be adapted to produce 2-butanone, an intermediate in the 2-butanol biosynthetic pathways disclosed herein. Specifically disclosed herein are the use of coenzyme B12-independent butanediol dehydratases that catalyzes the substrate to product conversion of 2,3-butanediol to 2-butanone in the process of producing 2-butanol and 2-butanone.
Owner:GEVO INC

Halohydrin dehalogenases and related polynucleotides

The present invention relates to novel halohydrin dehalogenase polypeptides and the polynucleotides that encode them. These polypeptides are useful in the production of 4-substituted-3-butyric acid derivatives and vicinal cyano, hydroxyl substituted carboxylic acid esters. The invention also provides related vectors, host cells and methods.
Owner:CODEXIS INC

Biosynthesis of isopentenyl pyrophosphate

Methods for synthesizing isopentenyl pyrophosphate are provided. A first method comprises introducing into a host microorganism a plurality of heterologous nucleic acid sequences, each coding for a different enzyme in the mevalonate pathway for producing isopentenyl pyrophosphate. A related method comprises introducing into a host microorganism an intermediate in the mevalonate pathway and at least one heterologous nucleic acid sequence, each sequence coding for an enzyme in the mevalonate pathway necessary for converting the intermediate into isopentenyl pyrophosphate. The invention also provides nucleic acid sequences, enzymes, expression vectors, and transformed host cells for carrying out the methods.
Owner:RGT UNIV OF CALIFORNIA

Production of increased oil and protein in plants by the disruption of the phenylpropanoid pathway

The present invention provides methods and compositions relating to generating plants having increased levels of oil and protein. This invention further provides recombinant expression cassettes, host cells, transgenic plants and genetically altered plants. The invention further provides isolated polynucleotides and their encoded proteins that are involved in phenylpropanoid biosynthesis.
Owner:MONSANTO TECH LLC

Protein expression systems

The present invention provides an improved expression system for the production of recombinant polypeptides utilizing auxotrophic selectable markers. In addition, the present invention provides improved recombinant protein production in host cells through the improved regulation of expression.
Owner:PFENEX

Method for the production of isobutanol

A method for the production of isobutanol by fermentation using a microbial production host is disclosed. The method employs a reduction in temperature during the fermentation process that results in a more robust tolerance of the production host to the butanol product.
Owner:BUTAMAXTM ADVANCED BIOFUELS

Recombinant Production of Steviol Glycosides

Recombinant microorganisms, plants, and plant cells are disclosed that have been engineered to express recombinant genes encoding UDP-glycosyltransferases (UGTs). Such microorganisms, plants, or plant cells can produce steviol glycosides, e.g., Rebaudioside A and / or Rebaudioside D, which can be used as natural sweeteners in food products and dietary supplements.
Owner:EVOLVA SA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products