Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

13997results about "Fluid heaters" patented technology

Automatically Balancing Register for HVAC Systems

Distributed nodes, such as intelligent register controllers, of a heating, ventilating and / or air conditioning (HVAC) system wirelessly communicate with each other on a peer-to-peer basis, forming a network, and collectively control the HVAC system, without a central controller. The intelligent register controllers collectively control the amount of conditioned air introduced into each region. Each node may base its operation at least in part on information about one or more (ideally all) of the other nodes. Each intelligent register controller automatically determines how much conditioned air to allow into its region, or how much return air to allow to be withdrawn from its region, based on information collected by the register controller, such as: current temperature of the region; desired temperature of the region; calculated amount of conditioned air required to change the region's temperature to the desired temperature; temperature of conditioned air begin supplied by a duct to the register; current time, day of week, vacation or other schedule data; temperatures of other regions and their respective desired temperatures; calculated amounts of air required to be supplied or withdrawn by the other controlled registers to change their respective regions' temperatures to their desired temperatures; or combinations thereof. Each register controller automatically determines when and to what extent to operate its respective controllable damper.
Owner:ZONER

Interactive control system for an HVAC system

An interactive system for controlling the operation of an HVAC system is provide that comprises a thermostat for initiating the operation of the HVAC system in either a full capacity mode of operation or at least one reduced capacity mode of operation, and a controller for an outside condenser unit having a condenser fan motor and a compressor motor, the controller being capable of operating the compressor in a full capacity mode and at least one reduced capacity mode. The system also comprises a controller for an indoor blower unit having a blower fan motor, the controller being capable of operating the blower fan motor in a full capacity mode an at least one reduced capacity mode. The system further includes a communication means for transmitting information between the outside condenser unit controller and at least the indoor blower controller, where the information relates to the operation of the indoor blower and the outdoor condenser unit. The indoor blower controller responsively controls the operation of the blower fan motor in a full capacity mode or a reduced capacity mode based on the information received from the outdoor unit controller, and the outdoor unit controller responsively controls the operation of the compressor in a full capacity mode or a reduced capacity mode based on the information received from the indoor blower controller.
Owner:COPELAND COMFORT CONTROL LP

Thermostat operable from various power sources

A thermostat is operable from battery, common-wire (“C-wire”), or furnace relay power. The thermostat includes a power source selector, such as a jumper wire, that is set when the thermostat is installed in a heating system. In a gas millivolt heating system, the thermostat operates off of battery power. In heating systems having a C-wire, a diode bridge converter converts alternating-current voltage to direct-current voltage to provide operating power to the thermostat. In heating systems without a C-wire and having sufficient furnace relay current, a triac converter in series with the furnace relay provides voltage spikes to the diode bridge converter to provide operating power to the thermostat when the furnace is on, and the diode bridge converts AC to DC voltage when the furnace is not on. The thermostat can also be used in cooling systems and heating, ventilation, and air-conditioning systems. Thus, the thermostat can be used in a wide variety of applications.
Owner:TIM SIMON

Method and apparatus for operating an electric water heater

A control system for an electric water heater having an upper heating element and a lower heating element is disclosed. The control system includes a control module that controls operation of the electric water heater by selectively toggling the upper and lower heating elements between an ON state and an OFF state and a consumer interface module that allows a consumer to input a set point temperature and select an energy savings mode for the electric water heater. The control module regularly monitors hot water usage and adjusts the set point temperature by a predetermined setback amount until a capacity of the water heater matches consumer usage.
Owner:EMERSON ELECTRIC CO

Pressure-detection method and a detection device for an electric pressure cooker

A pressure-detection method and detection device for electric pressure cooker is used for detecting continuously and accurately to control the pressure in the electric pressure cooker. The method comprises that a strainometer is provided on the periphery of a cooking pot of the electric pressure cooker, and a transmission arm is utilized to sense the expanding amount of the cooking pot and converts the expanding amount into a displacement, then makes the elastomer of the strainometer distorting; the distorting elastomer generates subsequently a controllable electric signal due to the electric characteristic of a sensitive foil, and the controllable electric signal is delivered to a central control unit, then control signals and display signals are outputted by the central control unit. The detection device comprises a strainometer, a transmission arm, a central control unit and the like. The strainometer is provided on the periphery of the cooking pot of the electric pressure cooker and is fixed by a proper way. The present invention can be used not only to detect and control the pressure of the electric pressure cooker and can be used for the household appliances also, such as electric iron, electric water heater and the like, the temperature and pressure of which need to be detected.
Owner:JIAN WEI WEN

Method and apparatus for energy recovery in an environmental control system

Control apparatus for an environmental control system comprises input circuitry receiving environmental information and output circuitry for controlling an HVAC system. Processing circuitry in the controller configures the output circuitry based at least in part on the signals received on the input circuitry. Information about the status of the HVAC system may be transferred to system administrators using a wireless link.
Owner:ELUTIONS

Control and method for operating an electric water heater

A water heater control for an electric water heater operates according to at least one fixed hardware and / or software temperature limit and a variable software temperature limit. The control monitors a temperature of water in a tank of the electric water heater to determine if the temperature exceeds the fixed hardware and / or software temperature limit. If the temperature exceeds the fixed temperature limit, the control turns off one or more heating elements of the electric water heater. The variable software temperature limit is indicative of a desired user temperature and an offset temperature. If the temperature exceeds the variable software temperature limit, the control turns off the one or more heating elements.
Owner:EMERSON ELECTRIC CO

System and method for hydronic space heating with electrical power generation

This invention provides a system and method for cogeneration of electric power and building heat that efficiently interfaces a liquid-cooled electric power generator with a multi-zone forced hot water (hydronic) space heating system. The system and method utilizes an electric generator with an electric output capacity (kW) that is near the time-averaged electric power consumption rate for the building and with a heat generation capacity that is useful for meeting building heating needs. This generator is operated as the priority source of heat for the building, but normally only when there is a demand for heat in building, with the intent of running the generator for long periods of time and generating a total amount of electric energy (kWhs) that is significant in comparison to the total electric energy consumption of the building over time. The actual onsite time-variable power demand (kW) is met by a combination of the cogenerated electric power produced on site and quantities of electric power from the public electric power grid or another external power source. Hence, useful electric power is generated on site as a by-product of the required generation of heat for space or water heating. The generator is run at a speed/operating condition that is appropriate to maintaining a long operational life.
Owner:CLIMATE ENERGY

System and method for hydronic space heating with electrical power generation

ActiveUS7284709B2Minimizing starting and stoppingMaximizing run timeInternal combustion piston enginesGas turbine plantsCogenerationElectric generator
This invention provides a system and method for cogeneration of electric power and building heat that efficiently interfaces a liquid-cooled electric power generator with a multi-zone forced hot water (hydronic) space heating system. The system and method utilizes an electric generator with an electric output capacity (kW) that is near the time-averaged electric power consumption rate for the building and with a heat generation capacity that is useful for meeting building heating needs. This generator is operated as the priority source of heat for the building, but normally only when there is a demand for heat in building, with the intent of running the generator for long periods of time and generating a total amount of electric energy (kWhs) that is significant in comparison to the total electric energy consumption of the building over time. The actual onsite time-variable power demand (kW) is met by a combination of the cogenerated electric power produced on site and quantities of electric power from the public electric power grid or another external power source. Hence, useful electric power is generated on site as a by-product of the required generation of heat for space or water heating. The generator is run at a speed / operating condition that is appropriate to maintaining a long operational life.
Owner:CLIMATE ENERGY

Low-pass filter, feedback system, and semiconductor integrated circuit

In a low-pass filter which is preferably used as a loop filter in a PLL or DLL, filter characteristics which are the same as those of a conventional low-pass filter are realized without causing collateral problems, such as an increase in the circuit area, the circuit complexity, or the resistance value, which may be caused due to size reduction of a capacitive element in the conventional low-pass filter. Thus, in a loop filter including a capacitive element and a resistive element which are connected in series, the first input terminal is provided at the side including the resistive element, and the second input terminal is provided at a connection point of the capacitive element and the resistive element. The first input terminal is supplied with the first electric current. On the other hand, the second electric current, which is a part of the first electric current supplied to the first input terminal, is extracted from the second input terminal, so that the electric current flowing into the capacitive element is smaller than the electric current flowing through the resistive element.
Owner:PANASONIC CORP

Heat engine and heat to electricity systems and methods

ActiveUS20100156112A1Efficiently and effectively produce powerFluid heatersInternal combustion piston enginesThermal energyWorking fluid
A waste heat recovery system, method and device executes a thermodynamic cycle using a working fluid in a working fluid circuit which has a high pressure side and a low pressure side. Components of the system in the working fluid circuit include a waste heat exchanger in thermal communication with a waste heat source also connected to the working fluid circuit, whereby thermal energy is transferred from the waste heat source to the working fluid in the working fluid circuit, an expander located between the high pressure side and the low pressure side of the working fluid circuit, the expander operative to convert a pressure / enthalpy drop in the working fluid to mechanical energy, a recuperator in the working fluid circuit operative to transfer thermal energy between the high pressure side and the low pressure side of the working fluid circuit, a cooler in thermal communication with the low pressure side of the working fluid circuit operative to control temperature of the working fluid in the low side of the working fluid circuit, a pump in the working fluid circuit and connected to the low pressure side and to the high pressure side of the working fluid circuit and operative to move the working fluid through the working fluid circuit, and a mass management system connected to the working fluid circuit, the mass management system, method and device having a working fluid vessel connected to the low pressure side of the working fluid circuit and configured to passively control an amount of working fluid mass in the working fluid circuit.
Owner:REXORCE THERMIONICS INC +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products