Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

788results about "Fault location by pulse reflection methods" patented technology

Method and apparatus for adaptive cancellation of responses in cabling

An Adaptive Vector Cancellation method which uses time domain data for an instrument connection to estimate magnitude, phase, and time position of a signal response such as NEXT or Return Loss associated with the connection. Based on the estimate of the amplitude and time of the connection response, a suitable full-bandwidth frequency response that corresponds to a point source of NEXT or Return Loss is determined. This calculated connector response is then scaled to an appropriate magnitude, phase and time shifted to the estimated position of the actual connection. The scaled / shifted response is then vectorially combined with the measured sweep data to suitably cancel the connection contribution to NEXT and / or Return Loss. Thus, the amount of NEXT or return loss existing in the user's patch cord is preserved, while the NEXT or return loss due to the instrument connection is suitably suppressed. Correction is done in the frequency domain, over the full bandwidth of the measured data.
Owner:MICROTEST

Passive intermodulation (PIM) distance to fault analyzer with selectable harmonic level

A distance to PIM measurement circuit is made using a device such as an AWS transceiver that has separate transmit and receive bands. With a typical AWS transceiver placed in close proximity to a PCS transceiver, the AWS device will include a band reject filter to eliminate interference from the PCS signals. The PIM measurement circuit includes two frequency sources F1 and F2 that are provided through a combiner for characterization of the PIM circuit. To enable distance determination, an FM measurement is created by using a offset sweep generator attached to one of the two frequency sources. To avoid frequencies blocked by the band reject filter, a desired harmonic of a test PIM harmonic signal is selected outside the band of the band reject filter. In one embodiment, a reference signal is provided by mixing a signal from an ×M multiplier connected to the F1 source with an ×N multiplier signal connected to the F2 source, the mixed output being filtered to select the desired harmonic reference signal to avoid the band reject filter. In another embodiment, a reference signal is created by generating all harmonics of the combined F1 and F2 signal using a series connected amplifier and clipping diodes with a filter again used to select the desired harmonic reference signal to avoid the band reject filter.
Owner:ANRITSU CO

Diagnostic methods for electrical cables utilizing axial tomography

Cable diagnostic test methods, systems and apparatus are disclosed that utilize “standing wave” principles to facilitate identification and location of insulation defect(s) along a power cable. The methods/systems measure dissipation factors and dielectric constants associated with the power cable insulation and the impedance of the power cable conductor at any number of points or sections along the axial length of the cable. In an exemplary embodiment, the disclosed method involves (i) connecting an alternating voltage source to a cable at a “sending end” thereof; (ii) applying a voltage to the cable at a first frequency to set up a traveling wave along the cable that is reflected at the “receiving end” thereof; (iii) permitting a standing wave pattern to be established along the cable by the traveling wave and the reflection thereof; (iv) measuring the total complex power loss (Sin) at the sending end of the cable; (v) calculating the standing wave voltage at any point/section of the cable based on the load impedance (ZL) connected at the receiving end of the cable, and the characteristic impedance (ZO) of the cable, or the measured/calculated cable parameters for the first frequency of the voltage source, (vi) repeating the foregoing steps while one of: (1) varying at least one of: the load impedance (ZL) connected at the receiving end of the cable, the first frequency of the voltage source; the output impedance of the voltage source, a combination of the load impedance (ZL), the output impedance of the voltage source and the first frequency of the voltage source, and combinations thereof; (2) interchanging sending and receiving cable ends; and (3) a combination thereof, and (vii) determining a dissipation factor (tan δ) and a dielectric constant (∈′), for the insulation, and an impedance, for the conductor at predetermined points/sections along the axis of the cable.
Owner:INSTR MFG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products