Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

163results about "Bed hydrotreatment processes apparatus" patented technology

Methods of hydrotreating a mixture made up of oils of animal or vegetable origin and of petroleum cuts with quench injection of the oils on the last catalyst bed

A hydrotreating method uses two catalyst beds with the introduction, on the last catalyst bed, of oils of animal or vegetable origin for co-treating a mixture made up of oils of vegetable or animal origin and of petroleum cuts (gas oil cuts (GO) and middle distillates) in order to produce gas oil effluents meeting specifications with an improved cetane number. The first catalyst bed is dedicated to only the deep desulfurization reactions (HDS1) of a petroleum type feed. The effluents of the first catalyst bed having an effluent sulfur content below or equal to 50 mg / kg are separated into two streams. The first stream, which is predominant, is sent to the gas oil pool. The second stream is mixed with oils of vegetable or animal origin. The resultant oil-petroleum cut mixture is then subjected to a milder hydrotreatment (HDT2). The effluents obtained at the outlet of the second catalyst bed can optionally be mixed with the predominant stream from the first bed. The process economy, the tolerance to the specifications relative to oils of animal or vegetable origin and the quality of the products obtained are thus greatly improved.
Owner:INST FR DU PETROLE

Upflow reactor system with layered catalyst bed for hydrotreating heavy feedstocks

A reactor system and process for hydrotreating a heavy feedstock contaminated with metals sulfur and carbon residue using an upflow fixed bed reactor with at least two catalyst layers having different hydrogenation activity.
Owner:CHEVROU USA INC

Filtration and flow distribution method for chemical reactors

A method for removing contaminants from an organic-based feed stream which includes the use of a layer of reticulated ceramic material to filter the organic-based feed stream and to provide liquid distribution upstream of the catalyst bed.
Owner:CRYSTAPHASE PRODS

Process for catalytic hydrotreating of sour crude oils

A continuous process for upgrading sour crude oil by treating the sour crude oil in a two step process that includes a hydro-demetallization section and a hydro-desulfurization section, both of which are constructed in a permutable fashion so as to optimize the operating conditions and catalyst lifespan to produce a high value crude oil having low sulfur and low organometallic impurities.
Owner:SAUDI ARABIAN OIL CO

Filtration and flow distribution method for chemical reactors using reticulated ceramics with uniform pore distributions

A method for removing contaminants from an organic-based feed stream which includes the use of a layer of reticulated ceramic material to filter the organic-based feed stream and to provide liquid distribution upstream of the catalyst bed.
Owner:CRYSTAPHASE PRODS

Continuous fixed-bed catalytic reactor and catalytic reaction method using same

A continuous fixed-bed catalytic reactor includes an inflow path for raw material gas for a catalytic reaction and an outflow path for reformed gas, a catalytic reaction container that is connected to the inflow path and the outflow path and holds a clumpy catalyst, catalyst holders that have a ventilation property and hold the clumpy catalyst, and a driving mechanism that moves the clumpy catalyst up and down by moving the catalyst holders up and down.
Owner:NIPPON STEEL CORP

Fluid distributor assembly for a multi-bed, downflow catalytic reactor

A distributor assembly for a multi-bed, downflow catalytic reactor is disclosed. The distributor assembly is configured for disposal and fixable attachment between the inner surfaces of the walls of a multi-bed downflow cylindrical reactor wall and for disposal between vertically stacked catalyst beds within the reactor. The assembly includes:(a) a collection plate configured for substantially horizontal disposal between the walls of a cylindrical reactor;(b) a plurality of generally arc-shaped elongated baffles disposed in a staggered, substantially symmetrical pattern about the collection plate;(c) a first mixing zone configured to be bounded on the bottom by the collection plate, on one side by a wall of a cylindrical reactor, and on the opposite side by the outer surface of the elongated baffles;(d) a cylindrical weir fixably attached to the collection plate about the outlet;(e) a second mixing zone bounded on the bottom by the collection plate, on one side by the outer surface of the cap and the first cylindrical weir, and on the opposite side by the inner surface of the elongated baffles;(f) a cap disposed over and about the first cylindrical weir, thereby forming a third mixing zone, plurality of semi-spiral-shaped baffles disposed in the third mixing zone, the semi-spiral-shape;(g) baffles having an elongated shape, having one lateral edge fixed to an inner surface of the cap or an opposite lateral edge fixed to an outer surface of the first cylindrical weir;(h) a substantially doughnut-shaped screen member disposed over a top portion of the cylindrical weir;(i) a plurality of fourth-mixing-zone baffles fixably attached to a top surface of the doughnut-shaped screen member; and(j) a plurality of quench gas ports disposed in the second mixing zone.
Owner:CHEVROU USA INC

Counter-Current Fluidized Bed Reactor for the Dehydrogenation of Olefins

A process and apparatus for the dehydrogenation of paraffins is presented. The process utilizes a reactor that includes a slower flow of catalyst through the reactor, with a counter current flow of gas through the catalyst bed. The catalyst is regenerated and distributed over the top of the catalyst bed, and travels through the bed with the aid of reactor internals to limit backmixing of the catalyst.
Owner:UOP LLC

Multiphase mixing device with staged gas introduction

The present invention comprises a mixing system that provides improved mixing of quench gas and process fluids in a height constrained interbed space while not increasing pressure drop. In particular, the device improves the effectiveness of an existing mixing volume in mixing the gas phase of two-phase systems. The mixing system includes a horizontal collection tray, a mixing chamber positioned below the collection tray, at least one passageway extending through the collection tray into the mixing chamber, and a vapor slipstream passageway extending through the collection tray into the mixing chamber for directing a vapor slipstream from above the collection tray into the mixing chamber. The mixing chamber and the collection tray define a two-phase mixing volume. The passageway conducts fluid containing at least some vapor from above the collection tray into the mixing chamber. The mixing chamber preferably includes at least one outlet opening for the downward passage of fluid. The vapor slipstream passageway, optionally, comprises a plurality of inlets arranged to impart rotational movement to the vapor phase at a location within the mixing chamber where the vapor phase has substantially expended the kinetic energy of its initial entry into the mixing chamber. As a result of providing at least one additional passageway for a vapor slipstream, and optionally, including one or more baffles as described above, significant re-acceleration of the vapor phase is achieved in the mixing chamber resulting in improvements in mixing efficiency of both the vapor and liquid phases.
Owner:EXXON RES & ENG CO

Method for revamping fixed-bed catalytic reformers

A fixed-bed catalytic reformer unit is converted to moving bed reactor / cyclic regenerator operation by re-using the fixed bed reactors of the original unit as regenerator vessels operated in cyclic regeneration mode in a new catalyst regeneration section. A flow connection, suitably a liftpipe, is provided to convey spent catalyst from the spent catalyst outlet of a new moving bed reactor section to the converted regenerator section, together with a flow connection for regenerated catalyst from the regenerator section to the regenerated catalyst inlet of the new moving bed reactor section. A flow control distributor directs spent catalyst sequentially to each of the regenerator vessels to carry out the regeneration with regeneration gas. Each regenerator vessel is cycled through a fill, regeneration, discharge sequence to maintain a continuous flow of catalyst to and from the reactor section.
Owner:EXXON RES & ENG CO

Catalyst retainer for radial flow reactor

A catalyst retainer includes an inner particle retention device having apertures and a first non-apertured section; and an outer particle retention device having apertures and a second non-apertured section. The inner and the outer particle retention devices are spaced apart to define a particle retaining space of the retainer. The first non-apertured section and the second non-apertured section define a blanked-off section of the particle retaining space, and the blanked-off section is spaced from an end of the particle retaining space. The catalyst retainer also includes a louver with at least a portion located between the blanked-off section and the end of the particle retaining space. The louver extends into the particle retaining space at an angle with respect to an inner surface of the inner particle retention device. The louver introduces the fluid to the top catalyst free surface in a more uniform manner and hence prevents particle movement and attrition.
Owner:UOP LLC

Method and apparatus for stripping sulfur-containing compounds from hydrocarbon feed stock in hydrorefining of petroleum distillates

A unit for hydrorefining of hydrocarbon crude oil comprising sulfur-containing compounds comprises first catalyst layer 33 and second catalyst layer 38, top space 34 for separating vapor component and liquid component, bottom space 36, and valve tray 35 that divides top space 34 and bottom space 36. Hydrogen released from hydrogen nozzle 40 placed in the bottom space is passed through liquid component that has accumulated in the valve tray and stripping of liquid components is performed. Hydrogen released from hydrogen nozzle 40 is again introduced, to second catalyst layer 38 as a cocurrent with the stripped liquid component. By stripping, it is possible to reduce the sulfur content, the nitrogen content and reduce the aromatic content of the hydrocarbon crude oil when compared to the conventional method. Since the hydrorefining unit has a simple structure, the unit can be easily made by modifying existing units.
Owner:JAPAN ENERGY CORP +1

Quench box for a multi-bed, mixed-phase cocurrent downflow fixed-bed reactor

A compact quench box design for a multi-bed, mixed-phase cocurrent downflow fixed-bed reactor has a quench pipe manifold and nozzle assembly, a collection tray, a mixing chamber, and a single final distributor tray. The quench pipe manifold and nozzle assembly is an annular ring pipe having nozzles arising therefrom. The mixing chamber is an annular compartment depending from the collection tray above having a partition pan, forming a partition weir at its inside diameter for liquid to flow, and a bottom section pan, which forms a vapor outlet weir at its inside diameter for vapor flow onto the final distributor tray below. This design reduces the number of manway required for the quench box.
Owner:H2ADVANCE

Hydroprocessing process and method of retrofitting existing hydroprocessing reactors

A process for hydroprocessing a hydrocarbon feed comprising the steps of (a) admixing the feed with a hydrogen rich gas and obtaining a first admixed process stream; (b) contacting the first admixed process stream with a first catalyst being active in hydrocracking of hydrocarbon compounds and obtaining a first catalyst effluent process stream; (c) separating the first catalyst effluent process stream in a gas phase stream and a liquid phase stream, and withdrawing the gas phase stream; (d) admixing the liquid phase stream with a hydrogen rich gas and obtaining a second admixed process stream; (e) contacting the second admixed process gas stream with a second catalyst being active in hydrocracking of hydrocarbon compounds and obtaining a second catalyst effluent process stream; (f) withdrawing and admixing the second catalyst effluent process stream with the gas phase stream obtained in step (c); and (g) withdrawing the admixed process stream provided in step (f).
Owner:HALDOR TOPSOE AS

Apparatus for hydrocracking and /or hydrogenating fossil fuels

A catalytic hydrocracking reactor vessel for the conversion of a hydrogen gas and fossil fuel feedstream to light liquid hydrocarbons. The reactor vessel comprises reactor cup riser means with a helical cyclonic separator conduit for separating a liquid and vapor product stream to provide an essentially vapor-free liquid recycle stream, grid plate bubble cap means with tapered bell cap wall housing having serrated edges for producing small hydrogen bubbles of increased total surface area of bubbles at lower pressure drop, optionally feedstream inlet pipe sparger means containing rows of downward directed slots for even distribution of the feedstream across the cross-sectional area of the reactor and providing free drain of solid particles from the sparger, and optionally liquid recycle inlet distributor means containing vertically curved plates for creating a whirling motion in the liquid recycle stream for better mixing with the feedstream with minimal solids settling.
Owner:HEADWATERS TECH INNOVATION LLC +1

Dual gas-liquid spargers for catalytic processing units

This invention relates to a quenching device for temperature control in catalytic processes. More particularly, the quenching device includes gas and liquid spargers for interbed temperature control in an interbed mixing zone in a catalytic reactor. The quenching device includes a first injector for injecting a first quenching fluid into an outer mixing zone and a second injector for injecting a second quenching fluid into an inner mixing zone. The quenching fluids include both gaseous and liquid quenching fluids.
Owner:EXXON RES & ENG CO

Catalytic distillation hydroprocessing

A method for hydroprocessing a hydrocarbon synthesis product feed to form upgraded fuels and lubricating oils. In a preferred embodiment, the method includes the steps of: (a) contacting a Fischer-Tropsch product with a hydroprocessing catalyst to produce a desired distillate; and (b) counter-currently stripping the desired distillate as it is produced. The method may include distilling the desired distillate or distilling the treated Fischer-Tropsch product.
Owner:CONOCOPHILLIPS CO

Gas-phase hydrotreating of middle-distillates hydrocarbon feedstocks

InactiveUS20100032347A1Enhancement to hydrotreating reactionMaximization of overall densityGas treatmentDispersed particle separationHydrogenGas phase
A method of subjecting a middle-distillate hydrocarbon feedstock to a hydrotreating reactions to remove heteroatoms and / or hydrogenate aromatics, and apparatus therefor. The method comprising heating a liquid middle distillates hydrocarbon feedstock to produce a heated feedstock, mixing the heated feedstock with a hydrogen-containing treating gas to produce a mixture, and bringing the mixture into contact with a hydrotreating catalyst at an elevated temperature and an elevated pressure effective for hydrotreating the feedstock. The hydrogen-containing gas is mixed with the heated feedstock in a ratio effective to fully vaporize the liquid feedstock at the elevated temperature and pressure before the feedstock is contacted with said hydrotreating catalyst. Ideally, the mixture is passed through a catalyst bed creating a pressure drop in the gas mixture equal to or less than 0.3 bar / m. Such a catalyst bed may be made of structured catalysts, such as monolithic catalysts.
Owner:HER MAJESTY THE QUEEN & RIGHT OF CANADA REPRESENTED BY THE MIN OF NATURAL RESOURCES

Hydrogen desulfurizer for hydrocarbon feeds with separated adsorption and catalyst material

A hydrogen desulfurizer (11) includes a tank (17) designed for downflow of hydrocarbon feedstock containing a plurality of layers (41-44) of catalyst interspersed with layers (46-49) of adsorbent. The layers may all comprise baskets, the adsorbent comprising pellets, such as zinc oxide pellets; the catalysts may be wash-coated on catalyst support such as monolith or foams, or may be wash-coated on netted wire mesh instead of being contained in a basket. The catalyst is heated to between about 442° F. (250° C.) and about 932° F. (500° C.). A mini-CPO (36) supplies hydrogen to the desulfurizer (11). Heaters (53, 55), which may either be electric or circulating heated fluid may also be used.
Owner:HYDROGENSOURCE
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products