Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

30 results about "Secretory pathway" patented technology

The secretory pathway is a series of steps a cell uses to move proteins out of the cell; a process known as secretion. The path of a protein destined for secretion has its origins in the rough endoplasmic reticulum, a membrane-bound compartment in the cell. The protein then proceeds through the many compartments of the Golgi apparatus and finally ends up in a vesicle that transiently fuses at the cell plasma membrane via permanent plasma membrane structures called porosomes, depositing the proteins outside of the cell. At each step along the way there are crucial factors that determine how and if the protein will proceed. Some of these factors include regulation of transportation, selection of particular proteins, the mechanics of proceeding to the next step, and modifications that can occur to the protein along the way. All of these factors contribute to how a protein arrives outside of a cell after being synthesized.

Expression of class 2 mannosidase and class III mannosidase in lower eukaryotic cells

ActiveUS7625756B2FungiSugar derivativesN-glycan processingClass iii
A method for producing human-like glycoproteins by expressing a Class 2 α-mannosidase having a substrate specificity for Manα1,3 and Manα1,6 glycosidic linkages in a lower eukaryote is disclosed. Hydrolysis of these linkages on oligosaccharides produces substrates for further N-glycan processing in the secretory pathway.
Owner:GLYCOFI

Genetically engineered bacteria for efficiently secreting, expressing and reconstructing cutinase and method for constructing same

The invention relates to genetically engineered bacteria for efficiently secreting, expressing and reconstructing cutinase and a method for constructing the same, belonging to the field of the bioengineering technology. The genetically engineered bacteria are escherichia coli BL21 (DE3) which carry two recombinant plasmids, and the recombinant plasmids are respectively plasmid pSTV28 carrying the specific genes in the Alpha-hemolysin A (hly A) pathway and plasmid pET20b(+) containing the cutinase-hly As genes. The method for constructing the genetically engineered bacteria for efficiently secreting, expressing and reconstructing cutinase comprises the following steps: constructing two key recombinant plasmids and transforming the constructed recombinant plasmids in the escherichia coli BL21 (DE3) to obtain the genetically engineered bacteria for efficiently secreting, expressing and reconstructing cutinase. The cutinase is produced by using the genetically engineered bacteria through culturing liquid and inducing and expressing the cutinase. The cutinase Tfu_0883 for thermophilic monospore bacteria of Thermobifida Fusca WSH03-11 is used as the report protein. The shaking flask fermentation shows that the extracellular output of the cutinase is 306U / mL which is 1.7 times of the output of the cutinase which adopts the II-type secreting pathway in the preliminary working process in the research laboratory. The cutinase is secreted and expressed efficiently.
Owner:JIANGNAN UNIV

Conductance of Improperly Folded Proteins Through the Secretory Pathway And Related Methods For Treating Disease

This invention provides the methodology and agents for treating any disease or clinical condition which is at least partly the result of endoplasmic reticulum-associated retention of proteins. Thus, the methods and agents of the present invention provide for the release of normally retained proteins from the endoplasmic reticulum. The present invention is particularly useful for treating any disease or clinical condition which is at least partly the result of endoplasmic reticulum-associated retention or degradation of mis-assembled or mis-folded proteins.
Owner:N FOLD LLC

Methods for glyco-engineering plant cells for controlled human o-glycosylation

This invention discloses the development of a novel platform for recombinant production of bioactive glycoproteins and cancer specific vaccines in plants. Plants and plant cell cultures have been humanized with respect to human mucin-type protein O-glycosylation. A panel of plant cell factories for production of recombinant glycoproteins with designed human O-glycosylation, including an improved cancer vaccine candidate, has been developed. The platform provides basis for i) production of an essentially unlimited array of O-glycosylated human glycoprotein therapeutics, such as human interferon α2B and podoplanin, and ii) for further engineering of additional cancer specific O-glycans on glycoproteins of therapeutical value. Currently, mammalian cells are required for human O-glycosylation, but plants offer a unique cell platform for engineering O-glycosylation since they do not perform human type O-glycosylation. Introduction of O-glycosylation into plant cells requires i) that wild-type plant cells do not modify the target peptide substrates and ii) that the appropriate enzymes and substrates are introduced into of plant cells such that O-glycosylation in the secretory pathway proceed and the glycosylated peptide substrates are preferentially exported to the exterior of the cell or accumulated in the cell. In this invention i) the integrity of transiently and stably expressed ‘mucin’ type target peptides in plants cells has been determined and ii) mucin-type O-glycosylation has been established in plants by transient and stable introduction of a Pseudomonas aeruginosa C4-epimerase, the human polypeptide GalNAc-transferases T2 and T4 (GalNAc-T2 and T4) and various human target peptides or proteins. In the present invention GalNAc-T2 and -T4 have been used to produce a Tn cancer glycoform of MUC1.
Owner:YANG ZHANG +7

Yeast protein expression secretion system

This invention discloses novel prepro-insulin polypeptides. The polypeptides consist of an N-terminal region, derived from N-terminal regions of secretory proteins, and a downstream insulin polypeptide region. The N-terminal region directs the polypeptides efficiently into the secretory pathway of yeasts. Modifications at the N-terminal region, just adjacent to the insulin polypeptide region, further increase the efficiency of secretion and improves the final yield of secreted insulin. The patent also discloses expression systems for the expression of said polypeptides under the regulation of yeast derived alcohol inducible promoters. Thus a combination of such promoters and precursors with the said N-terminal regions appear to function as very high yielding expression systems in yeasts.
Owner:WOCKHARDT LTD

Genetically engineered bacteria for efficiently secreting, expressing and reconstructing cutinase and method for constructing same

The invention relates to genetically engineered bacteria for efficiently secreting, expressing and reconstructing cutinase and a method for constructing the same, belonging to the field of the bioengineering technology. The genetically engineered bacteria are escherichia coli BL21 (DE3) which carry two recombinant plasmids, and the recombinant plasmids are respectively plasmid pSTV28 carrying the specific genes in the Alpha-hemolysin A (hly A) pathway and plasmid pET20b(+) containing the cutinase-hly As genes. The method for constructing the genetically engineered bacteria for efficiently secreting, expressing and reconstructing cutinase comprises the following steps: constructing two key recombinant plasmids and transforming the constructed recombinant plasmids in the escherichia coli BL21 (DE3) to obtain the genetically engineered bacteria for efficiently secreting, expressing and reconstructing cutinase. The cutinase is produced by using the genetically engineered bacteria through culturing liquid and inducing and expressing the cutinase. The cutinase Tfu_0883 for thermophilic monospore bacteria of Thermobifida Fusca WSH03-11 is used as the report protein. The shaking flask fermentation shows that the extracellular output of the cutinase is 306U / mL which is 1.7 times of the output of the cutinase which adopts the II-type secreting pathway in the preliminary working process in the research laboratory. The cutinase is secreted and expressed efficiently.
Owner:JIANGNAN UNIV

Methods for glyco-engineering plant cells for controlled human O-glycosylation

This invention discloses the development of a novel platform for recombinant production of bioactive glycoproteins and cancer specific vaccines in plants. Plants and plant cell cultures have been humanized with respect to human mucin-type protein O-glycosylation. A panel of plant cell factories for production of recombinant glycoproteins with designed human O-glycosylation, including an improved cancer vaccine candidate, has been developed. The platform provides basis for i) production of an essentially unlimited array of O-glycosylated human glycoprotein therapeutics, such as human interferon α2B and podoplanin, and ii) for further engineering of additional cancer specific O-glycans on glycoproteins of therapeutical value. Currently, mammalian cells are required for human O-glycosylation, but plants offer a unique cell platform for engineering O-glycosylation since they do not perform human type O-glycosylation. Introduction of O-glycosylation into plant cells requires i) that wild-type plant cells do not modify the target peptide substrates and ii) that the appropriate enzymes and substrates are introduced into of plant cells such that O-glycosylation in the secretory pathway proceed and the glycosylated peptide substrates are preferentially exported to the exterior of the cell or accumulated in the cell. In this invention i) the integrity of transiently and stably expressed ‘mucin’ type target peptides in plants cells has been determined and ii) mucin-type O-glycosylation has been established in plants by transient and stable introduction of a Pseudomonas aeruginosa C4-epimerase, the human polypeptide GalNAc-transferases T2 and T4 (GalNAc-T2 and T4) and various human target peptides or proteins. In the present invention GalNAc-T2 and -T4 have been used to produce a Tn cancer glycoform of MUC1.
Owner:YANG ZHANG +7
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products