Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2979 results about "Polarization beam splitter" patented technology

Polarization Beam Splitter/Combiner. Polarization beam splitter can be used as beam splitters or beam combiners. The output beam which are parallel to input beam is called p-polarized beam while the orthogonal output beam is defined as s-polarized beam.

Single panel color video projection display using reflective banded color falling-raster illumination

A projection display system. The projection system includes a light source, illumination optics that are capable of splitting the light from the source into individual color bands, and folding mirrors. The folding mirrors operate to direct the color bands to a reflective element that has a contoured surface. The contoured surface of the reflective element causes the light to form into scanning rasters that are recombined and sent to a spatial light modulator. The spatial light modulator is typically made up of a panel of individually addressable elements. If the spatial light modulator requires polarized light, a polarizing beam splitter and quarter-wave plate are included as part of the illumination optics.
Owner:SHARP LAB OF AMERICA INC

Substrate-Guide Optical Device Utilizing Polarization Beam Splitters

There is provided an optical device, including a light waves-transmitting substrate having two major surfaces and edges, optical means for coupling light into the substrate by total internal reflection, and a plurality of partially reflecting surfaces (22a, 22b) carried by the substrate wherein the partially reflecting surfaces (22a, 22b) are parallel to each other and are not parallel to any of the edges of the substrate, and wherein one or more of the partially reflecting surfaces (22a, 22b) is an anisotropic surface.
Owner:LUMUS LTD

Efficient two-panel projection system employing complementary illumination

An imaging system, comprising a broadband unpolarized white light source (81), a polarization converter system for converting polarization axes of unpolarized white light into a substantially single polarization axis, to produce a beam of polarized light, a selective polarization filter (82), adapted to selectively rotate a polarization axis of a selected spectral band of light of the with respect to remaining polarized light based on a control signal (119), a polarized beam splitter (84), for separating light having a the substantially single polarization axis from light having a rotated polarization axis, a pair of electro-optic spatial light modulators (86, 89), disposed along a path of light within the spectral band and a path of remaining light outside the spectral band, respectively, and being adapted to modulate an image therein, and a polarized beam splitter (88), for recombining modulated light from the pair of light modulators. In a preferred embodiment, the selective polarization filter (82, 72) is divided into a plurality of regions (70, 71), each adapted to independently and selectively rotate a polarization axis of a selected spectral band of light of the with respect to remaining polarized light.
Owner:PHILIPS ELECTRONICS NORTH AMERICA

Eyepiece for near-to-eye display with multi-reflectors

An eyepiece for a head mounted display includes an illumination module, an end reflector, a viewing region, and a polarization rotator. The illumination module includes an image source for launching computer generated image (“CGI”) light along a forward propagating path. The end reflector is disposed at an opposite end of the eyepiece from the illumination module to reflect the CGI back along a reverse propagation path. The viewing region is disposed between the illumination module and the end reflector. The viewing region includes a polarizing beam splitter (“PBS) and non-polarizing beam splitter (“non-PBS”) disposed between the PBS and the end reflector. The viewing region redirects the CGI light from the reverse propagation path out of an eye-ward side of the eyepiece. The polarization rotator is disposed in the forward and reverse propagation paths of the CGI light between the viewing region and the end reflector.
Owner:GOOGLE LLC

Simple high efficiency optical coherence domain reflectometer design

The present invention discloses simple and yet highly efficient configurations of optical coherence domain reflectometry systems. The combined use of a polarizing beam splitter with one or two polarization manipulator(s) that rotate the returned light wave polarization to an orthogonal direction, enables one to achieve high optical power delivery efficiency as well as fixed or predetermined output polarization state of the interfering light waves reaching a detector or detector array, which is especially beneficial for spectral domain optical coherence tomography. In addition, the system can be made insensitive to polarization fading resulting from the birefringence change in the sample and reference arms. Dispersion matching can also be easily achieved between the sample and the reference arm for high resolution longitudinal scanning.
Owner:CARL ZEISS MEDITEC INC

Method of and system for providing a head up display (HUD)

A head up display (HUD) includes an image source, a first lens, a second lens, a focusing mirror, a polarizing beam splitter, a second beam splitter and a combiner. The first lens is disposed between the image source and polarizing beam splitter. The second lens is disposed between the polarizing beam splitter and the second beam splitter. The polarizing beam splitter is disposed between the first lens, the mirror, and the second lens. The optical system for the HUD forms an intermediate image between the second lens and the second beam splitter. The intermediate image is located at the focal point of the curved combiner, and therefore the curved combiner collimates the display light upon reflection. The HUD can be compact and have a wide field of view.
Owner:ROCKWELL COLLINS INC

Simple high efficiency optical coherence domain reflectometer design

The present invention discloses simple and yet highly efficient configurations of optical coherence domain reflectometry systems. The combined use of a polarizing beam splitter with one or two polarization manipulator(s) that rotate the returned light wave polarization to an orthogonal direction, enables one to achieve high optical power delivery efficiency as well as fixed or predetermined output polarization state of the interfering light waves reaching a detector or detector array, which is especially beneficial for spectral domain optical coherence tomography. In addition, the system can be made insensitive to polarization fading resulting from the birefringence change in the sample and reference arms. Dispersion matching can also be easily achieved between the sample and the reference arm for high resolution longitudinal scanning.
Owner:CARL ZEISS MEDITEC INC

Apparatus for dental oct imaging

An apparatus (10) for obtaining an image of a tooth (20) includes an image sensor and a white light source (12) providing broadband polychromatic light and an ultraviolet light source providing narrow-band light. A combiner (15) directs broadband polychromatic light and narrow band light along a common illumination path to illuminate the tooth. A polarization beamsplitter (18) directs polarized light from the illumination path along an optical axis (216). An optical coherence tomography (OCT) imaging apparatus (70) splits the low coherence light into a sample path and a reference path and a dichroic element (78) directs the polarized illumination and the sample path low coherence light along the optical axis. An image processor (100) identifies a region of interest according to either a white light image (124), a fluorescent light image (120), or both and the OCT imaging apparatus obtains an OCT image over the region of interest.
Owner:CARESTREAM HEALTH INC

Substrate-guide optical device utilizing polarization beam splitters

An optical device including a light waves-transmitting substrate having two major surfaces and edges, has optical means for coupling light into the substrate by total internal reflection, and a plurality of partially reflecting surfaces (22a, 22b) carried by the substrate. The partially reflecting surfaces (22a, 22b) are parallel to each other and are not parallel to any of the edges of the substrate. One or more of the partially reflecting surfaces (22a, 22b) is an anisotropic surface.
Owner:LUMUS LTD

Lightweight eyepiece for head mounted display

An eyepiece includes an eyepiece frame, an in-coupling polarization beam splitter (“PBS”), an end reflector, and an out-coupling PBS. The eyepiece frame defines an air cavity and includes an illumination region for receiving computer generated image (“CGI”) light into the eyepiece frame and a viewing region to be aligned with an eye of a user. The in-coupling PBS is supported within the eyepiece frame at the illumination region to re-direct the CGI light to a forward propagation path extending along the air cavity towards the viewing region. The end reflector is disposed to reflect the CGI light back along a reverse propagation path within the eyepiece frame. The out-coupling PBS is supported at the viewing region to pass the CGI light traveling along the forward propagation path and to redirect the CGI light traveling along the reverse propagation path out of an eye-ward side of the eyepiece frame.
Owner:GOOGLE LLC

Polarized head-mounted projection display

An image display system and associated method for image displaying The system includes an image source configured to generate image light, projection optics configured to project the image light, and a polarizing beam splitter optically coupled to the projection optics and configured to propagate into a first optical path first polarized light having a first polarization and to propagate into a second optical path second polarized light having a second polarization The system includes a quarter wave converter disposed in the first optical path and configured to rotate the first polarization by a quarter phase as the first polarized light first passes through the quarter wave converter, and includes a reflective screen disposed in the first optical path and configured to reflect rotated first polarized light from the quarter wave converter back through the quarter wave converter for further quarter phase rotation.
Owner:THE ARIZONA BOARD OF REGENTS ON BEHALF OF THE UNIV OF ARIZONA

Method and apparatus for measuring optical reflectivity and imaging through a scattering medium

An apparatus and method for performing optical coherence domain reflectometry. The apparatus preferably includes a single output light source to illuminate a sample with a probe beam and to provide a reference beam. The reference beam is routed into a long arm of an interferometer by a polarizing beamsplitter. A reflected beam is collected from the sample. A 90.degree. double pass polarization rotation element located between the light source and the sample renders the polarizations of the probe beam and reflected beam orthogonal. The polarizing beamsplitter routes the reflected beam into a short arm of the interferometer. The interferometer combines the reference beam and the reflected beam such that coherent interference occurs between the beams. The apparatus ensures that all of the reflected beam contributes to the interference, resulting in a high signal to noise ratio.
Owner:OPTICAL BIOPSY TECH

Free-space quantum cryptography system

A system and method for quantum key delivery in a single-photon, free-space cryptography scheme including a transmitter and a receiver. The transmitter includes two pairs of photon sources, each of which represents a specific photon polarization direction. The first pair of photon sources represents a first polarization basis while the remaining pair of photon sources represents a second polarization basis. The first and second polarization basis are rotated with respect to each other so as to produce non-orthogonal polarization eigenstates. A transmitter polarizing beamsplitter corresponding to each of the pairs of the photon sources is provided whereby the polarizations of each of the photon sources of each pair of photon sources are recombined. A transmitter non-polarizing beamsplitter is provided whereby the recombined polarizations are combined for output to the receiver. The receiver includes a set of optics inversely disposed with respect to the optics of the transmitter and two pairs of photon detectors.
Owner:ILLINOIS INSTITUTE OF TECHNOLOGY

Light source device and projection display

A light source device which employs a plurality of light emitting diodes for emitting different colors of light, and a projection display which incorporates the light source device provide for a good white balance and a high light utilization efficiency in consideration of light emission efficiencies inherent to the respective color light emitting diodes. An illumination beam from each of light emission boards is converted to one type of polarized light respectively by associated polarized light forming means, and resulting polarized light beams are combined by a polarizing beam splitter to produce an illumination beam for illuminating a two-dimensional image device which may comprise a digital mirror device (DMD). The light emitting diodes in the respective colors are arranged on respective light emission boards in a predetermined ratio of distribution to optimize the white balance.
Owner:NEC DISPLAY SOLUTIONS LTD

Reflective LCD projection system using wide-angle Cartesian polarizing beam splitter and color separation and recombination prisms

An optical imaging system including an illumination system, a Cartesian PBS, and a prism assembly. The illumination system provides a beam of light, the illumination system having an f / # less than or equal to 2.5. The Cartesian polarizing beam-splitter has a first tilt axis, oriented to receive the beam of light. A first polarized beam of light having one polarization direction is folded by the Cartesian polarizing beam splitter and a second polarized beam of light having a second polarization direction is transmitted by the Cartesian polarizing beam splitter. The Cartesian polarizing beam splitter nominally polarizes the beam of light with respect to the Cartesian beam-splitter to yield the first polarized beam in the first polarization direction. The color separation and recombination prism is optically aligned to receive the first polarized beam. The prism has a second tilt axis, a plurality of color separating surfaces, and a plurality of exit surfaces. The second tilt axis maybe oriented perpendicularly to the first tilt axis of the Cartesian polarizing beam-splitter so that the polarized beam is nominally polarization rotated into the second polarization direction with respect to the color separating surfaces and a respective beam of colored light exits through each of the exit surfaces. Each imager is placed at one of the exit surface of the color separating and recombining prism to receive one of the respective beams of colored light, wherein each imager can separately modulate the polarization state of the beam of colored light.
Owner:3M INNOVATIVE PROPERTIES CO

Collimating optical device and system

There is provided a light-guide, compact collimating optical device, including a light-guide having a light-waves entrance surface, a light-waves exit surface and a plurality of external surfaces, a light-waves reflecting surface carried by the light-guide at one of the external surfaces, two retardation plates carried by light-guides on a portion of the external surfaces, a light-waves polarizing beamsplitter disposed at an angle to one of the light-waves entrance or exit surfaces, and a light-waves collimating component covering a portion of one of the retardation plates. A system including the optical device and a substrate, is also provided.
Owner:LUMUS LTD

Micro collimator system and method for a head up display (HUD)

A head up display can use a catadioptric collimating system. The head up display includes an image source. The head up display also includes a collimating mirror, and a polarizing beam splitter. The light from the image source enters the beam splitter and is reflected toward the collimating mirror. The light striking the collimating mirror is reflected through the beam splitter toward a combiner. A field lens can include a diffractive surface. A corrector lens can be disposed after the beam splitter.
Owner:ROCKWELL COLLINS INC

Catadioptric reduction projection optical system and exposure apparatus having the same

A catadioptric projection optical system is provided, which can use a beam splitting optical system smaller in size than a conventional polarizing beam splitter, can set a long optical path from a concave reflecting mirror to an image plane, allows easy adjustment of the optical system, and has excellent imaging performance. A light beam from an object surface forms a first intermediate image through a refracting lens group. A light beam from the first intermediate image passes through a polarizing beam splitter and is reflected by a concave reflecting mirror to form a second intermediate image in the polarizing beam splitter. A light beam from the second intermediate image is reflected by the polarizing beam splitter means to form a final image on the image plane via a refracting lens group. The polarizing beam splitter means is arranged near the positions at which the intermediate images are formed.
Owner:NIKON CORP

Method and apparatus for reducing laser speckle using polarization averaging

A method and apparatus for reducing speckle uses polarization averaging. A polarizing beam splitter divides a first polarized laser output into a second polarized laser output and a third polarized laser output. A plurality of mirrors creates an optical path difference between the second and third polarized laser outputs. The optical path difference is at least about a coherence length for the first polarized laser output. The second and third polarized laser outputs are combined into a fourth laser output, which illuminates a depolarizing screen. If a human eye or an optical system having a intensity detector views the depolarizing screen, the eye or the intensity detector will detect reduced speckle, which results from uncorrelated speckle patterns created by the second polarized laser output and the third polarized laser output. A first alternative embodiment of the invention functions without the optical path difference being at least about the coherence length. In the first alternative embodiment, a piezoelectric transducer varies an optical path length by at least about a half wavelength of the first polarized laser output. By varying the optical path length by a sufficient frequency, the eye or the intensity detector will detect the reduced speckle. A second alternative embodiment combines two orthogonally polarized laser outputs, from two lasers, into a combined laser output. The combined laser output illuminates the depolarizing screen. A third alternative embodiment rotates the first laser output with a rotation frequency to form a rotating polarized laser output, which illuminates the depolarizing screen.
Owner:SILICON LIGHT MACHINES CORP

Color laser printer

A color laser printer producing a color image using a single laser scanning unit includes a lighting unit including first and second laser diodes emitting beams of one polarization, a polarization prism transmitting or reflecting incident beams depending on a direction of polarization, and third and fourth laser diodes disposed in a different direction from the first and second laser diodes with respect to the polarization prism, a rotary polygon mirror that reflects the beam emitted along the same path from the lighting unit, an f-θ lens that focuses the beam reflected by the rotary polygon mirror, first and second polarization beam splitters, each of which transmits or reflects the beam passing through the f-θ lens depending on the direction of the polarization, and first through fourth photoconductive units on which the beams reflected and transmitted through the first and second polarization beam splitters are incident. In the color laser printer, lengths of optical paths between the f-θ lens and each of the first through fourth photoconductive units are equal. The color laser printer is constructed such that a plurality of light sources emitting the beams of one polarization are arranged separately and the beams emitted from the light sources are combined by the polarization prism to enter the f-θ lens, thereby reducing a thickness of the f-θ lens.
Owner:HEWLETT PACKARD DEV CO LP

Optical mixer for coherent detection of polarization-multiplexed signals

An optical mixer that, in one embodiment, has a single optical hybrid optically coupled to a single polarization beam splitter. The optical hybrid mixes a polarization-multiplexed optical communication signal and a local-oscillator signal to generate four mixed signals, each corresponding to a different relative phase shift between the communication and local-oscillator signals. The polarization beam splitter separates each of the mixed signals into two polarization components, subsequent processing of which enables an optical receiver employing the optical mixer to recover the data carried by the communication signal.
Owner:ALCATEL-LUCENT USA INC

Two-beam optical coherence tomography apparatus

The scanning speed of a sample in Doppler OCT, etc., is increased to enable quick measurement of blood flow rate, blood flow volume, etc. Wideband light from a light source 2 is linearly polarized by a polarization controller 3 and this linearly polarized beam is split into vertically polarized light and horizontally polarized light using a Wollaston prism 14 at a sample arm, which are then irradiated simultaneously onto two different locations of the sample in the scanning direction using a galvanometer mirror18, and reference light from a reference arm 5 and object light from a sample arm 6 are merged and caused to interfere with each other, with the resulting interference signal light passed through a diffraction grating 26 for spectroscopy, while the horizontal component and vertical component are separated by a polarized beam splitter 28, to simultaneously measure the components with two polarization-sensitive optical detectors 29, 30 and thereby obtain two tomography images of the same location at different times by one mechanical scan, thus allowing the amount of temporal change in phase to be measured using the two tomography images.
Owner:UNIV OF TSUKUBA

Method and apparatus for a near-to-eye display

An eyepiece for a head mounted display includes an illumination module, an end reflector, a viewing region, and a polarization rotator. The illumination module provides CGI light along a forward propagation path within the eyepiece. The end reflector is disposed at an opposite end of the eyepiece from the illumination module to reflect the CGI light back along a reverse propagation path within the eyepiece. The viewing is disposed between the illumination module and the end reflector and includes an out-coupling polarizing beam splitter (“PBS”). The out-coupling PBS passes the CGI light traveling along the forward propagation path and redirects the CGI light traveling along the reverse propagation path out of an eye-ward side of the eyepiece. The polarization rotator is disposed in the forward and reverse propagation paths between the out-coupling PBS and the end reflector.
Owner:GOOGLE LLC

System for and method of catadioptric collimation in a compact head up display (HUD)

A head up display can use a catadioptric collimating system. The head up display includes an image source. The head up display also includes a collimating mirror, and a polarizing beam splitter. The light from the image source enters the beam splitter and is reflected toward the collimating mirror. The light striking the collimating mirror is reflected through the beam splitter toward a combiner. A corrective lens can be disposed after the beam splitter.
Owner:ROCKWELL COLLINS INC

Cube wire-grid polarizing beam splitter

InactiveUS20070297052A1Short back focal lengthLow costPolarising elementsBeam splitterWire grid
A cube wire-grid polarizing beam splitter includes a pair of prisms secured together to form a cube. An array of parallel conductive wires is disposed between the pair of prisms. A pair of continuous film layers is disposed on one side of the wires between the wires and one of the pair of prisms with an intermediate film layer adjacent the prism having a refractive index greater than both i) a refractive index of a rear film layer adjacent the plate wire grid polarizer, and ii) a refractive index of an adjacent prism. A layer of ribs is disposed on another side of the wires between the wires and another of the pair of prisms, the ribs being aligned with and supporting the array of parallel conductive wires.
Owner:MOXTEK INC

Projection display systems

A projection apparatus has a first light beam having a first state of polarization and containing a first set of primary colors, a first light modulator arrangement for spatially modulating the polarization state of the first light beam to encode a first image thereon in the first set of primary colors, a second light beam having a second state of polarization and containing a second set of primary colors, and a second light modulator arrangement for spatially modulating the polarization state of the second light beam to encode a second image thereon. A polarizing beam splitter having first and second input ports to admit the first and second encoded light beams. Light of one polarization state incident on the first port is transmitted to the output port and light of another polarization state incident on the second port is reflected to said output port so that said transmitted and reflected light is combined into a common output beam at said output port. The first and second images having different polarizations contained in the output beam projected onto a display screen can be viewed with the aid of glasses with selective color filters responsive to the first and second sets of primary colors. By using different sets of primary colors considerable efficiencies and economies can be realized relative to a pure polarization-based system.
Owner:BOOTHROYD SIMON

Optical Circuit Device

InactiveUS20080031566A1Reduce PDLExtinction ratio is not deterioratedOptical waveguide light guidePlanar substrateLight beam
The present invention provide an optical circuit device having: an optical circuit; a polarization beam splitter / combiner for splitting an incoming light beam into two polarization beams and combining the two polarization beams into an outgoing light beam; a first optical waveguide and a second optical waveguide for connecting the optical circuit and the polarization beam splitter / combiner and receiving the two polarization beams independently; and a polarization rotator, arranged on the first optical waveguide, for rotating a polarization plane of one of the two polarization beams split by the polarization beam splitter / combiner so as to match a polarization plane of the other of the two polarization beams, the optical circuit, the polarization beam splitter / combiner, the first optical waveguide, the second optical waveguide and the polarization rotator being integrated on a planar substrate.
Owner:FURUKAWA ELECTRIC CO LTD

Sequential projection color display using multiple imaging panels

A color projection display device may include SLMs or other panels. One embodiment includes a device for displaying a color image including first and second sequences of temporally-integrateable primary color image components, the device also includes first (209) ans second (206) SLM panels (604, 606), first and second driving circuitry, and first through fourth polarizing beam splitters.
Owner:SAMSUNG DISPLAY CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products