Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

10742 results about "Beam splitters" patented technology

Diffraction grating based interferometric systems and methods

Diffraction grating based fiber optic interferometric systems for use in optical coherence tomography, wherein sample and reference light beams are formed by a first beam splitter and the sample light beam received from a sample and a reference light beam are combined on a second beam splitter. In one embodiment, the first beam splitter is an approximately 50 / 50 beam splitter, and the second beam splitter is a non 50 / 50 beam splitter. More than half of the energy of the sample light beam is directed into the combined beam and less than half of the energy of the reference light beam are directed into the combined beam by the second beam splitter. In another embodiment, the first beam splitter is a non 50 / 50 beam splitter and the second beam splitter is an approximately 50 / 50 beam splitter. An optical circulator is provided to enable the sample light beam to bypass the first beam splitter after interaction with a sample. Two combined beams are formed by the second beam splitter for detection by two respective detectors. More than half of the energy of the light source provided to the first beam splitter is directed into the sample light beam and less than half of the energy is directed into the reference light beam. The energy distribution between the sample and reference light beams can be controlled by selection of the characteristics of the beam splitters.
Owner:BOSTON SCI SCIMED INC

Head/helmet mounted passive and active infrared imaging system with/without parallax

A passive/active infrared imaging system apparatus for mounting on a head/helmet includes a passive infrared camera Head Pack having a removable narrow band filter cover, an objective lens, a beam splitter, an uncooled focal plane array (UFPA) package, an interface board, and a display unit such a liquid crystal display (LCD), with forward/back, up/down, and tilt adjustment functions fitting any mask, mounted in the front of said head/helmet for converting infrared light images into electronic signals. An electronic unit coupled between the UFPA of the infrared camera and the display unit, includes a controller for processing video signals from the infrared camera and supplying them to the display unit. The electronic circuit includes a wireless video & audio transceiver, a piezoelectric microphone, a voice controller, and a neural network pattern recognition chip. The display unit (such as LCD)] is inside the head pack and mounted on the head/helmet for converting electronic signals into visible light images, so that it is in front of eyes of a user, so that the user can directly view an external scene without blocking his normal vision, if the optical axis of the display unit is aligned with the optical axis of the objective lens, the system parallax is eliminated. A Battery Pack having a video controller board and battery is mounted on the rear of the head/helmet so that it gives the video output and power to the infrared system. An eye-safe near infrared laser diode with corresponding optical and electronic attachments mounted on the head/helmet illuminates targets to get images through same passive infrared system.
Owner:ZHANG EVAN Y W

Opitcal projection and image sensing apparatus

An optical projection and image sensing apparatus including a light source, a light valve, a first lens set, a sensing module, and a beam splitter is provided. The light valve is used to convert an illumination light from the light source to an image light beam. The first lens set is used to project the image light to display an image on a screen, and the sensing module is used to sense a sensing light from the image on the screen. The beam splitter is disposed on the optical paths of the image light and the sensing light from the image on the screen. One of the sensing module and the light valve is disposed on the optical path of the sensing light passing through the beam splitter, and the other is disposed on optical path of the sensing light reflected by the beam splitter.
Owner:YOUNG OPTICS

Micromechanical and related lidar apparatus and method, and fast light-routing components

Several systems and a method are taught for rapid modulation of a light beam in lidar and other imaging. Most of these involve micromechanical and other very small control components. One such unit is a light-switching fabric, based on displacement of liquid in a tube that crosses a junction of two optical waveguides. In some forms, the fabric is preferably flexible to enable folding or coiling to form a two-dimensional face that interacts with optical-fiber ends an opposed fiber bundle. The rapid operation of the switch fabric enables it to be used as a beam-splitter, separating incoming and return beams; and also to form pulses from supplied CW light. Other control components include micromechanical mirrors (e. g. MEMS mirrors) operated in arrays or singly, liquid-crystal devices, and other controlled-birefringence cells. Some of these devices are placed within an optical system for directional light-beam steering.
Owner:ARETE ASSOCIATES INC

Ophthalmic instrument with adaptive optic subsystem that measures aberrations (including higher order aberrations) of a human eye and that provides a view of compensation of such aberrations to the human eye

An improved ophthalmic instrument for in-vivo examination of a human eye including a wavefront sensor that estimates aberrations in reflections of the light formed as an image on the retina of the human eye and a phase compensator that spatially modulates the phase of incident light to compensate for the aberrations estimated by the wavefront sensor Optical elements create an image of a fixation target at the phase compensator, which produces a compensated image of the fixation target that compensates for aberrations estimated by the wavefront sensor. The compensated image of the fixation target produced by the phase compensator is recreated at the human eye to thereby provide the human eye with a view of compensation of the aberrations the human eye as estimated by the wavefront sensor. The phase compensator preferably comprises a variable focus lens that compensates for focusing errors and a deformable mirror that compensates for higher order aberrations. The optical elements preferably comprise a plurality of beam splitters and a plurality of lens groups each functioning as an afocal telescope. In addition, instruments and systems are provided that exploit these capabilities to enable efficient prescription and / or dispensing of corrective optics (e.g., contact lens and glasses).
Owner:NORTHROP GRUMMAN SYST CORP +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products