Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1467 results about "Peripheral oxygen saturation" patented technology

Oxygen saturation can be measured regionally and noninvasively. Arterial oxygen saturation (SaO2) is commonly measured using pulse oximetry. Tissue saturation at peripheral scale can be measured using NIRS. This technique can be applied on both muscle and brain.

Signal component processor

A signal processor generates basis functions and identifies at least one basis function component of a sensor signal in order to calculate a physiological measurement. The signal processor is advantageously applied to pulse oximetry so as to directly calculate oxygen saturation and so as to calculate a robust oxygen saturation measurement. In particular, a signal component transform may be calculated within a window around a derived pulse rate estimate. A signal component transform may also utilize sinusoidal basis functions, and an optimization of a signal component transform may occur at a particular frequency or a set of frequencies. A sinusoidal waveform or waveforms at that frequency or set of frequencies is generated to select associated red and infrared components of the sensor signal, and an oxygen saturation is calculated from a magnitude ratio of these components.
Owner:JPMORGAN CHASE BANK NA

Physiological measurement communications adapter

A sensor interface is configured to receive a sensor signal. A transmitter modulates a first baseband signal responsive to the sensor signal so as to generate a transmit signal. A receiver demodulates a receive signal corresponding to the transmit signal so as to generate a second baseband signal corresponding to the first baseband signal. Further, a monitor interface is configured to communicate a waveform responsive to the second baseband signal to a sensor port of a monitor. The waveform is adapted to the monitor so that measurements derived by the monitor from the waveform are generally equivalent to measurements derivable from the sensor signal. The communications adapter may further comprise a signal processor having an input in communications with the sensor interface, where the signal processor is operable to derive a parameter responsive to the sensor signal and where the first baseband signal is responsive to the parameter. The parameter may correspond to at least one of a measured oxygen saturation and a pulse rate.
Owner:JPMORGAN CHASE BANK NA

Parallel alarm processor

A parallel alarm processor has a threshold detector, a pattern extractor, a predetermined reference pattern, a first alarm and a second alarm. The threshold detector has a first output responsive to relatively long duration oxygen desaturations. The pattern extractor has a second output responsive to relatively short duration oxygen desaturations. The predetermined reference pattern is indicative of a series of intermittent oxygen desaturations. A first alarm is triggered when the first output crosses a lower limit threshold. A second alarm is triggered when the second output matches the predetermined reference pattern. In an embodiment, an integrator inputs smoothed oxygen saturation measurements to the threshold detector, and a predictor inputs predictive oxygen saturation measurements to the pattern extractor.
Owner:JPMORGAN CHASE BANK NA

Systems and methods for determining blood oxygen saturation values using complex number encoding

The disclosure includes pulse oximetry systems and methods for determining point-by-point saturation values by encoding photoplethysmographs in the complex domain and processing the complex signals. The systems filter motion artifacts and other noise using a variety of techniques, including statistical analysis such as correlation, or phase filtering.
Owner:MASIMO CORP

Low power pulse oximeter

A pulse oximeter adaptively samples an input signal from a sensor in order to reduce power consumption in the absence of overriding conditions. Various sampling mechanisms may be used individually or in combination, including reducing the duty cycle of a drive current to a sensor emitter, intermittently powering-down a front-end interface to a sensor detector, or increasing the time shift between processed data blocks. Both internal parameters and output parameters may be monitored to trigger or override a reduced power consumption state. In this manner, a pulse oximeter can lower power consumption without sacrificing performance during, for example, high noise conditions or oxygen desaturations.
Owner:JPMORGAN CHASE BANK NA

Dual-mode pulse oximeter

A pulse oximeter has an integrated mode in which it operates as a plug-in module for a multiparameter patient monitoring system (MPMS). The pulse oximeter also has a portable mode in which operates separately from the MPMS as a battery-powered handheld or standalone instrument. The pulse oximeter has a sensor port that receives a photo-plethysmographic signal as input to an internal processor. The pulse oximeter processes this sensor signal to derive oxygen saturation and pulse rate measurements. In the portable mode, this information is provided on its display, and stored in memory for trend capability. In the integrated mode, the pulse oximeter provides oxygen saturation and pulse rate measurements to the MPMS through a docking station to be displayed on a MPMS monitor. In the integrated mode, the portable pulse oximeter docks to the docking station, which in turn is inserted in one or more MPMS slots. The docking station can function as a simple electrical pass-through device between the docked portable pulse oximeter and the MPMS or it can provide a MPMS communications interface.
Owner:JPMORGAN CHASE BANK NA

Method and apparatus for non-invasive blood constituent monitoring

A system for determining a biologic constituent including hematocrit transcutaneously, noninvasively and continuously. A finger clip assembly includes including at least a pair of emitters and a photodiode in appropriate alignment to enable operation in either a transmissive mode or a reflectance mode. At least one predetermined wavelength of light is passed onto or through body tissues such as a finger, earlobe, or scalp, etc. and attenuation of light at that wavelength is detected. Likewise, the change in blood flow is determined by various techniques including optical, pressure, piezo and strain gage methods. Mathematical manipulation of the detected values compensates for the effects of body tissue and fluid and determines the hematocrit value. If an additional wavelength of light is used which attenuates light substantially differently by oxyhemoglobin and reduced hemoglobin, then the blood oxygen saturation value, independent of hematocrit may be determined. Further, if an additional wavelength of light is used which greatly attenuates light due to bilirubin (440 nm) or glucose (1060 nm), then the bilirubin or glucose value may also be determined. Also how to determine the hematocrit with a two step DC analysis technique is provided. Then a pulse wave is not required, so this method may be utilized in states of low blood pressure or low blood flow.
Owner:HEMA METRICS

Wearable Device, System and Method for Measuring Vital Parameters

A wireless mobile device is provided for measuring pulse and blood oxygen saturation (SpO2). The device may include a SpO2 sensor, a pulse sensor, and a main controller to receive and process signals from the SpO2 and the Pulse sensors, and to enable reconfiguration of the SpO2 and the Pulse sensors by commands received from a remote server. The device may include a light measurement module to measure pulse parameters, and a light measurement module to measure SpO2 parameters, the light measurement modules including an emitting / receiving unit and an electronic unit.
Owner:SHKLARSKI DROR

Specially configured nasal pulse oximeter/photoplethysmography probes, and combined nasal probe/cannula, selectively with sampler for capnography, and covering sleeves for same

The present invention relates to novel nasal pulse oximeter probes that are configured to be placed across the septum of the nose. These probes are fabricated to provide signals to obtain arterial oxygen saturation and other photoplethysmographic data. The present invention also relates to a combined nasal pulse oximeter probe / nasal cannula. The present invention also relates to other devices that combine a pulse oximeter probe with a device supplying oxygen or other oxygen-containing gas to a person in need thereof, and to sampling means for exhaled carbon dioxide in combination with the novel nasal probe. In certain embodiments, an additional limitation of a control means to adjust the flow rate of such gas is provided, where such control is directed by the blood oxygen saturation data obtained from the pulse oximeter probe.
Owner:UNIV OF FLORIDA RES FOUNDATION INC +1

Blood monitoring system

The present invention is directed towards apparatuses and methods for the automated measurement of blood analytes and blood parameters for bedside monitoring of patient blood chemistry. Particularly, the current invention discloses a programmable system that can automatically draw blood samples at a suitable programmable time frequency (or at predetermined timing), can automatically analyze the drawn blood samples and immediately measure and display blood parameters such as glucose levels, hematocrit levels, hemoglobin blood oxygen saturation, blood gases, lactate or any other blood parameter.
Owner:INTELLECTUAL DISCOVERY CO LTD

Wireless Health Monitor Device and System with Cognition

A home-based remote care solution provides sensors including a basic health monitor (BHM) that is a measurement and feedback system. The BHM operates with low power integrated communications combined with an in-home, low power mesh network or programmable digital assistant (PDA) with cell phone technology. A cognitive system allows remote monitoring of the location and the basic health of an individual. The BHM measures oxygen saturation (SaO2), temperature of the ear canal, and motion, including detection of a fall and location within a facility. Optionally, the BHM measures CO2, respiration, EKG, EEG, and blood glucose. No intervention is required to determine the status of the individual and to convey this information to care providers. The cognitive system provides feedback and assistance to the individual while learning standard behavior patterns. An integrated audio speaker and microphone enable the BHM to deliver audio alerts, current measurements, and voice prompts. A remote care provider can deliver reminders via the BHM. The device may be worn overnight to allow monitoring and intervention. Through the ability to inquire, the cognitive system is able to qualify events such as loss of unconsciousness or falls. Simple voice commands activate the device to report its measurements and to give alerts to care providers. Alerts from care providers can be in a familiar voice to assist with compliance to medication regimens and disease management instructions. Simple switches allow volume control and manual activation. The device communicates with a series of low-power gateways to an in-home cognitive server and point-of-care (POC) appliance (computer). Alone the BHM provides basic feedback and monitoring with limited cognitive capabilities such as low oxygen or fall detection. While connected to the cognitive server, full cognitive capabilities are attained. Full alerting capability requires the cognitive server to be connected through an Internet gateway to the remote care provider.
Owner:WOLF JAMES L +3

Vital signs probe

A combination of a patient core temperature sensor and the dual-wavelength optical sensors in an ear probe or a body surface probe improves performance and allows for accurate computation of various vital signs from the photo-plethysmographic signal, such as arterial blood oxygenation (pulse oximetry), blood pressure, and others. A core body temperature is measured by two sensors, where the first contact sensor positioned on a resilient ear plug and the second sensor is on the external portion of the probe. The ear plug changes it's geometry after being inserted into an ear canal and compress both the first temperature sensor and the optical assembly against ear canal walls. The second temperature sensor provides a reference signal to a heater that is warmed up close to the body core temperature. The heater is connected to a common heat equalizer for the temperature sensor and the pulse oximeter. Temperature of the heat equalizer enhances the tissue perfusion to improve the optical sensors response. A pilot light is conducted to the ear canal via a contact illuminator, while a light transparent ear plug conducts the reflected lights back to the light detector.
Owner:FRADEN JACOB

Method for spectrophotometric blood oxygenation monitoring

A method and apparatus for non-invasively determining the blood oxygen saturation level within a subject's tissue is provided that utilizes a near infrared spectrophotometric (NIRS) sensor capable of transmitting a light signal into the tissue of a subject and sensing the light signal once it has passed through the tissue via transmittance or reflectance. The method includes the steps of: (1) transmitting a light signal into the subject's tissue, wherein the transmitted light signal includes a first wavelength, a second wavelength, and a third wavelength; (2) sensing a first intensity and a second intensity of the light signal, along the first, second, and third wavelengths after the light signal travels through the subject at a first and second predetermined distance; (3) determining an attenuation of the light signal for each of the first, second, and third wavelengths using the sensed first intensity and sensed second intensity of the first, second, and third wavelengths; (4) determining a difference in attenuation of the light signal between the first wavelength and the second wavelength, and between the first wavelength and the third wavelength; and (5) determining the blood oxygen saturation level within the subject's tissue using the difference in attenuation between the first wavelength and the second wavelength, and the difference in attenuation between the first wavelength and the third wavelength.
Owner:EDWARDS LIFESCIENCES CORP

Specially configured lip/cheek pulse oximeter/photoplethysmography probes, selectively with sampler for capnography, and covering sleeves for same

The present invention relates to novel lip / cheek probes for detection of pulse-based differences in light absorbence across the vascularized tissue of a lip or cheek of a patient. These probes are fabricated to provide signals to estimate arterial oxygen saturation, and / or to obtain other photoplethysmographic data. The present invention also relates to a combined probe / cannula. The present invention also relates to other devices that combine a pulse oximeter probe with a device supplying oxygen or other oxygen-containing gas to a person in need thereof, and to sampling means for exhaled carbon dioxide in combination with the novel lip / cheek probes. In certain embodiments, an additional limitation of a control means to adjust the flow rate of such gas is provided, where such control is directed by the blood oxygen saturation data obtained from the pulse oximeter probe.
Owner:BETA BIOMED SERVICES +1

System and method for functional brain mapping and an oxygen saturation difference map algorithm for effecting same

A method of functional brain mapping of a subject is disclosed. The method is effected by (a) illuminating an exposed cortex of a brain or portion thereof of the subject with incident light; (b) acquiring a reflectance spectrum of each picture element of at least a portion of the exposed cortex of the subject; (c) stimulating the brain of the subject; (d) during or after step (c) acquiring at least one additional reflectance spectrum of each picture element of at least the portion of the exposed cortex of the subject; and (e) generating an image highlighting differences among spectra of the exposed cortex acquired in steps (b) and (d), so as to highlight functional brain regions. Algorithms for calculating oxygen saturation and blood volume maps which can be used to practice the method are also disclosed. Systems for practicing the method are also disclosed.
Owner:APPLIED SPECTRAL IMAGING

Disposable fiber optic probe

An apparatus for transferring two frequencies of electromagnetic energy to and from a portion of a living body for the purpose of blood oxygen saturation measurements. The two frequencies of electromagnetic energy are transferred to the portion of the living body through a single optical fiber cable (which could be a bundle) to a coupler and then through a short section of optical cable to an optical element adjacent to the portion of the living body. After the two frequencies of electromagnetic energy are transmitted through the portion of the living body they are received by another optical element and transported away from the portion of the living body to a coupler through a short section of optical cable where they may be converted to electrical signals. Alternatively, the two frequencies of electromagnetic energy are carried away from the coupler. The signals from the coupler (whether they are electromagnetic signals or electrical signals) are directed to a measurement instrument, which through an adapter may be a conventional measurement instrument known in the prior art or a measurement instrument specifically designed for use with the signals produced at the coupler. The two short sections of optical cable and the two optical elements adjacent to the portion of the living body and the coupler are combined to form a disposable probe. Alternatively, the disposable probe can include a transducer to convert the transmitted optical energy to electrical signals.
Owner:RIC INVESTMENTS LLC

Pulse oximetry methods and apparatus for use within an auditory canal

Methods and apparatus for detecting oxygen saturation levels in blood from within an auditory canal of a living being proximal to a tympanic membrane are disclosed. The auditory canal is lined with tissue and includes a proximal bend and a distal bend located between the proximal bend and the tympanic membrane. Oxygen levels are detected by emitting one or more wavelengths of light into a first position on the tissue of the auditory canal in a first region defined by the distal bend and the tympanic membrane. The wavelengths of light are then sensed at a second position on the tissue of the auditory canal in the first region. A blood oxygen saturation level and / or pulse rate is then calculated responsive to intensity information corresponding to the wavelengths of light detected at the second position.
Owner:SARNOFF CORP

Optical apparatus and method of use for non-invasive tomographic scan of biological tissues

The present invention relates to a non-invasive optical system equipped with optical tomographic scanning method and algorithm for quantifying scattering and absorption properties and chromophore concentrations of highly scattering medium such as biological tissues, for 3D mapping and imaging reconstruction of the spatial and temporal variations in such properties. The invention further relates to a method and an apparatus for simultaneous measurement of concentrations of biochemical substances and blood oxygen saturation inside a biological tissue and arterial blood.
Owner:O2 MEDTECH +1

Apparatus for measurement of blood analytes

There is described a device for the non-invasive measurement of one or more analytes in blood in a patient's body part which comprises a light transmitter comprising a plurality of transmitting fibres positioned to transmit light to the body part and a light detector comprising a plurality of light detector fibres position to detect light transmitted through or reflected from the body part. The device especially utilises the non-pulsatile element of a patient's blood. There is also described a method of measuring blood glucose levels and a device programmed so as to calculate one or more of the haemoglobin index, the oxygen index and the blood oxygen saturation.
Owner:WHITLAND RES

Diagnostic method and apparatus using light

A diagnosis method and apparatus for measuring blood hemoglobin concentration, oxygen saturation, pulse rate, respiration rate, or degree of aging of blood vessels using light includes an input / output unit for receiving a command for measurement from a user and for providing information on the result of a measurement to the user; a control unit for receiving the command for measurement from the input / output unit and for generating a control signal; a light generating unit for generating at least two light beams for measurement according to the control signal; a light receiving unit for receiving the light beams transmitted through an object that is subject to measurement and for converting the received light beams into electrical signals; and a data processing unit for processing the electrical signals received from the light receiving unit and for outputting information on the result of a predetermined measurement.
Owner:SAMSUNG ELECTRONICS CO LTD

Electronic endoscope system

An electronic endoscope system includes a light source device for sequentially emitting light having different wavelength bands, an electronic endoscope for receiving reflected light of light sequentially illuminating a subject tissue containing a blood vessel in a body cavity and sequentially outputting an imaging signal corresponding to the wavelength band of the received light, an aligner for aligning images corresponding to imaging signals obtained using light having different wavelength bands outputted from the electronic endoscope, an image producer for producing an oxygen saturation level image representing the distribution of the oxygen saturation level in the blood vessel in a given depth from the imaging signals of the images aligned by the aligner, and an image display for displaying the oxygen saturation level image produced by the image producer.
Owner:FUJIFILM CORP

Non-invasive blood component measurement system

Non-invasive, optical apparatus and methods for the direct measurement of hemoglobin derivatives and other analyte concentration levels in blood using diffuse reflection and transmission spectroscopy in the wavelength region 400-1350 nm which includes the transparent tissue window from approximately 610 to 1311 nanometers and, using diffuse reflection spectroscopy, the mid-infrared region from 4.3-12 microns in wavelength. Large area light collection techniques are utilized to provide a much larger pulsate signal than can be obtain with current sensor technology. Sensors used in separate or simultaneous precision measurements of both diffuse reflection and transmission, either separately or simultaneously, from pulsate, blood-perfused tissue for the subsequent determination of the blood analytes concentrations such as arterial blood oxygen saturation (SaO2), carboxyhemoglobin (COHb), oxyhemoglobin (OHb), deoxyhemoglobin (dOHb), methemoglobin (metHb), water (H2O), hematocrit (HCT), glucose, cholesterol and proteins such as albumin and other analytes components.
Owner:3WAVE OPTICS

Blood sugar level measuring apparatus

Blood sugar levels are measured non-invasively based on temperature measurement. Non-invasively measured blood sugar level values obtained by a temperature measurement scheme are corrected by blood oxygen saturation and blood flow volume, thereby stabilizing the measurement data.
Owner:HITACHI LTD

Integrated physiologic sensor system

An embodiment of the present invention comprises a self-contained breathing apparatus (SCBA) mask that incorporates a series of physiologic sensors. These physiologic sensors are mounted on the interior of the SCBA mask in such a way as to contact the facial skin of an individual wearing the mask. The physiologic sensors monitor, among other things, heart rate and carbon monoxide and oxygen saturation levels. The physiologic sensors are connected to a transmitting apparatus attached to the SCBA. The SCBA transmitter sends output data from the physiologic sensors to a remote processor. The SCBA transmitter also sends location information of the individual wearing the SCBA mask to the remote processor. The remote processor compiles the physiologic and location data for the wearer of the SCBA and transmits a signal back to the SCBA receiver which, in turn, sends a signal to a display integrated into a SCBA mask. The display indicates to the individual his physiologic status. The display incorporates indicator lights are integrated into the mask of the SCBA to indicate, for example, when bottled air must be switched on, to indicate the emergency situation of the wearer and / or to indicate the direction that the wearer of the SCBA is going. The processor associated with the transmitter also monitors groups of individuals wearing the SCBA masks. In this way, the particular status of several individuals in hazardous environment can be monitored at once and their situation known over a period of time in the hazardous conditions. Specifically, the physiologic condition of the group can be monitored to track the changes in the group condition over the time that the group is exposed to the hazardous environment.
Owner:BIOASYST L L C

Optimized gas supply using photoplethysmography

The present invention relates to optimized gas supply utilizing photoplethysmography. Flow rate, pressure or amount of gas is adjusted as a function of blood oxygen saturation data, photoplethysmography signals, or both, obtained from the pulse oximeter probe.
Owner:BETA BIOMED SERVICES +1

Method for spectrophotometric blood oxygenation monitoring

A method and apparatus for non-invasively determining the blood oxygen saturation level within a subject's tissue is provided that utilizes a near infrared spectrophotometric (NIRS) sensor capable of transmitting a light signal into the tissue of a subject and sensing the light signal once it has passed through the transmitting a light signal into the subject's tissue, wherein the transmitted light signal includes a first wavelength, a second wavelength, and a third wavelength; (2) sensing a first intensity and a second intensity of the light signal, along the first, second, and third wavelengths after the light signal travels through the subject at a first and second predetermined distance; (3) determining an attenuation of the light signal for each of the first, second, and third wavelengths using the sensed first intensity and sensed second intensity of the first, second, and third wavelengths; (4) determining a difference in attenuation of the light signal between the first wavelength and the second wavelength, and between the first wavelength and the third wavelength; and (5) determining the blood oxygen saturation level within the subject's tissue using the difference in attenuation between the first wavelength and the second wavelength, and the difference in attenuation between the first wavelength and the third wavelength.
Owner:EDWARDS LIFESCIENCES CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products