Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

40 results about "Optical cross section" patented technology

Optical Cross Section or OCS is a value which describes the maximum amount of optical flux reflected back to the source. The standard unit of measurement is ... Optical cross section of a flat mirror with a given reflectivity at a particular wavelength Where is the cross sectional diameter of the beam.

Method and Configuration for Optically Detecting an Illuminated Specimen

A configuration for the optical detection of a specimen, wherein the specimen or at least part of the specimen is scanned by means of linear illumination by scanning means, means for linear beam shaping of the illuminating light are provided, and the illuminating light has a preferably periodic structure in at least one spatial direction in that means for generating the structure are disposed in the illuminating beam path, light coming from the specimen is detected and images of the specimen are generated therefrom, at least one optical sectional image through the specimen and / or one image with increased resolution is / are calculated from the images, and means for generating the structure are disposed downstream of the scanning means in the direction of the illumination.
Owner:CARL ZEISS MICROSCOPY GMBH

System and method for optical section image line removal

An apparatus, system, and method for generating an image are disclosed. A processor may generate a first output image based on a plurality of input images and remove an artefact, if any, from the first output image to generate a second output image. For example, in an embodiment, the processor may calculate a contribution of the artefact to image intensity values and subtract the calculated contribution from the image intensity values. In another embodiment, the processor may delete a predetermined portion of a transform image representing transform data obtained by applying an image transform to the first output image, thereby modifying the transform data, and may generate a non-transform image based on the modified transform data.
Owner:GE HEALTHCARE BIO SCI CORP

Method and arrangement for deeply resolved optical detection of a sample

InactiveUS7170696B2Prevents limiting of dynamic rangePreventing modulationImage enhancementPrismsPhase shiftedLength wave
A method and arrangement for the depth-resolved optical detection of a specimen with an illumination light distribution of at least one wavelength generated on or in a specimen and detection particularly of the light that is influenced due to interaction with the specimen, particularly fluorescent light and / or reflected light and / or luminescent light and / or scattered and / or transmitted light, wherein the illumination light has a modulation in at least one spatial direction and the detection light which is modulated like the illumination light is spatially split into two components having a phase shift relative to one another, the components are measured separately and an optical section image of the specimen and / or of part of the specimen is calculated from them.
Owner:CARL ZEISS MICROSCOPY GMBH

Optical film

The present invention relates to an optical film. The optical film comprises a first refraction portion having a plurality of first optical lens patterns that have optical sections for controlling light and are distributed at a predetermined interval in the form of embossment; and a second refraction portion having a plurality of second optical patterns that have optical sections and are arranged linearly at a predetermined interval and formed along patterns surfaces of the first optical lens patterns. Accordingly, there is provided an optical film in which high brightness can be achieved at a wide viewing angle, the wet-out phenomenon can be avoided, and productivity can be improved.
Owner:LMS SUZHOU MATERIALS CO LTD

Method for modulating gold nanorod optical section on single wavelength

ActiveCN109773176AUniform regrowthControl scatteringMaterial nanotechnologyGold nanorodBromine
The invention discloses a method for modulating a gold nanorod optical section on a single wavelength. The method for modulating the gold nanorod optical section on the single wavelength includes thefollowing steps that newly prepared AgNO<3> is added in a mixed liquid of CTAB and 5-bromine salicylic acid, and anti-light standing is conducted; a HAuCl<4>.3H<2>O solution is added, and uniform stirring is conducted; an ascorbic acid solution is added, stirring is conducted until the solution is colorless, and a growth liquid is obtained; the HAuCl<4>.3H<2>O solution is added in a mixed liquid of the CTAB and the 5-bromine salicylic acid, and stirring is conducted; the ascorbic acid solution is added, stirring is conducted until the solution is colorless, and a regrowth liquid is obtained; an original seed crystal solution and the growth liquid are mixed and stirred, and standing is conducted until the color of the solution turns into purple; centrifugation is conducted on the solution,gold nanorods are dispersed in the mixed liquid of the CTAB and the 5-bromine salicylic acid, and a new seed crystal solution is obtained; and the new seed crystal solution and the regrowth liquid aremixed, the volume of the regrowth liquid and the concentration of the 5-bromine salicylic acid are adjusted, then the gold nanorods with the same wavelengths and different optical sections can be obtained. According to the method for modulating the gold nanorod optical section on the single wavelength, the operation is simple, the repetitive rate is high, and scattering and absorbing sections ofthe gold nanorods can be modulated on any single wavelength.
Owner:SUZHOU UNIV

Method for detecting localized environment based on core shell structure nanoparticle strong coupling

The invention provides a method for detecting a localized environment based on core shell structure nanoparticle strong coupling. The method comprises a step a) of designing a localized surface plasmon resonance (LSPR) nanoparticle sensor of a core shell structure, wherein after the strong coupling of the LSPR nanoparticle sensor, two peaks of a split extinction cross-section of the LSPR nanoparticle sensor in water are symmetric; a step b) of obtaining relations of two-peak strong of strong coupling splitting varying with a localized environment refractive index around the sensor; a step c) of obtaining a two-peak strength ratio, wherein the ratio is the value obtained by dividing the strength of the peak with a long wavelength by the strength of the peak with a short wavelength and the ratio has a specific law for the variation of the localized environment refractive index; a step d) of fitting the ratio according to the law into a function with respect to the localized environment refractive index; a step e) of detecting a to-be-detected surrounding localized environment according to the law and the fitting function thereof, substituting the measured strength ratio of the spectrum split peak into the fitting function to perform calculation, and obtaining a value of the localized environment refractive index.
Owner:江苏鲲鹏未来光学有限公司

A detection method for local environment based on strong coupling of core-shell nanoparticles

The invention provides a method for detecting a localized environment based on core shell structure nanoparticle strong coupling. The method comprises a step a) of designing a localized surface plasmon resonance (LSPR) nanoparticle sensor of a core shell structure, wherein after the strong coupling of the LSPR nanoparticle sensor, two peaks of a split extinction cross-section of the LSPR nanoparticle sensor in water are symmetric; a step b) of obtaining relations of two-peak strong of strong coupling splitting varying with a localized environment refractive index around the sensor; a step c) of obtaining a two-peak strength ratio, wherein the ratio is the value obtained by dividing the strength of the peak with a long wavelength by the strength of the peak with a short wavelength and the ratio has a specific law for the variation of the localized environment refractive index; a step d) of fitting the ratio according to the law into a function with respect to the localized environment refractive index; a step e) of detecting a to-be-detected surrounding localized environment according to the law and the fitting function thereof, substituting the measured strength ratio of the spectrum split peak into the fitting function to perform calculation, and obtaining a value of the localized environment refractive index.
Owner:江苏鲲鹏未来光学有限公司

Method and apparatus for optical confocal imaging, using a programmable array microscope

Optical confocal imaging, being conducted with a programmable array microscope (PAM) (100), having a light source device (10), a spatial light modulator device (20) with a plurality of reflecting modulator elements, a PAM objective lens and a camera device (30), wherein the spatial light modulator device (20) is configured such that first groups of modulator elements (21) are selectable for directing excitation light to conjugate locations of an object to be investigated and for directing detection light originating from these locations to the camera device (30), and second groups of modulator elements (22) are selectable for directing detection light from non-conjugate locations of the object to the camera device (30), comprises the steps of directing excitation light from the light source device (10) via the first groups of modulator elements to the object to be investigated, wherein the spatial light modulator device (20) is controlled such that a predetermined pattern sequence of illumination spots is focused to the conjugate locations of the object, wherein each illumination spot is created by at least one single modulator element defining a current PAM illumination aperture, collecting image data of a conjugate image lc, based on collecting detection light from conjugate locations of the object for each pattern of PAM illumination apertures, collecting image data of a non-conjugate image lnc, based on collecting detection light from non-conjugate locations of the object for each pattern of PAM illumination apertures via the second groups of modulator elements (22) with a non-conjugate camera channel of the camera device (30), and creating an optical sectional image of the object (OSI) based on the image data of the conjugate image lc and the non-conjugate image lnc, wherein the step of collecting the image data of the conjugate image lc includes collecting a part of the detection light from the conjugate locations of the object for each pattern of PAM illumination apertures via modulator elements of the second groups of modulator elements (22) surrounding the current PAM illumination apertures with the non-conjugate camera channel of the camera device (30). Furthermore, a PAM calibration method and PAMs being configured for the above methods are described.
Owner:MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN EV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products