Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

191 results about "Microcontact printing" patented technology

Microcontact printing (or μCP) is a form of soft lithography that uses the relief patterns on a master polydimethylsiloxane (PDMS) stamp to form patterns of self-assembled monolayers (SAMs) of ink on the surface of a substrate through conformal contact as in the case of nanotransfer printing (nTP). Its applications are wide-ranging including microelectronics, surface chemistry and cell biology.

Materials and methods for immobilization of catalysts on surfaces and for selective electroless metallization

A method of immobilizing a catalyst on a substrate surface involves providing novel ligating copolymers comprising functional groups capable of binding to a substrate surface and functional groups capable of ligating to catalysts such as metal ions, metal complexes, nanoparticles, or colloids; applying the ligating copolymer to a substrate surface to cause the ligating copolymer to bind thereto, and contacting the modified substrate surface with a solution of a catalyst, causing the catalyst to be ligated by the ligating copolymer and thus immobilized on the substrate surface. The ligating copolymer may be patterned on the substrate surface using a method such as microcontact printing. A method of selectively metallizing a substrate in a desired pattern involves using a ligating chemical agent comprising functional groups capable of binding to a substrate surface and functional groups capable of ligating to electroless plating catalysts; applying the ligating chemical agent to a substrate in a desired pattern using microcontact printing to cause the ligating chemical agent to bind thereto; contacting the modified substrate surface with a solution of an electroless plating catalyst, causing the catalyst to be ligated by the ligating chemical agent and thus bound to the surface; and metallizing the catalyzed regions of the substrate surface using electroless plating.
Owner:GLOBALFOUNDRIES INC

Method And Apparatus for Microcontact Printing of MEMS

The embodiments disclosed herein are directed to fabrication methods useful for creating MEMS via microcontact printing by using small organic molecule release layers. The disclose method enables transfer of a continuous metal film onto a discontinuous platform to form a variable capacitor array. The variable capacitor array can produce mechanical motion under the application of a voltage. The methods disclosed herein eliminate masking and other traditional MEMS fabrication methodology. The methods disclosed herein can be used to form a substantially transparent MEMS having a PDMS layer interposed between an electrode and a graphene diaphragm.
Owner:MASSACHUSETTS INST OF TECH

Preparation method for multielement dissymmetrical microsphere and heterogeneous microsphere shell

The invention belongs to the scientific field of materials, particularly relates to a preparation method for a multielement dissymmetrical microsphere and a heterogeneous microsphere shell. The method comprises the following steps: a single-layered non-close-packed silicon dioxide colloidal crystal is prepared through an improved micro-contact printing technology, and the dissymmetrical microsphere and the heterogeneous microsphere shell are prepared through the combination with an angle-controllable non-close-packed silicon dioxide colloidal crystal deposition and etching technology. During the whole process, the operation is simple and convenient, the consumption is low, the process is clean, the controllability is high, and high stability of the dissymmetrical microsphere and the microsphere shell are achieved. Various dissymmetrical microspheres compounded by various kinds of materials are simply prepared through controlling the period, the deposition angle and the deposition frequency of the non-close-packed colloidal crystal and the kind of the deposition materials, and the corresponding heterogeneous microsphere shell can be obtained through chemically etching the silicon dioxide microsphere. The dissymmetrical microsphere and the heterogeneous microsphere shell, which are prepared through the invention, have important significance in scientific researches or practical applications.
Owner:JILIN UNIV

Microcontact printing

A microcontact printing tool having a print unit including a stamp head with a stamp and a wafer chuck for retaining a substrate. The stamp contained by the stamped head movable relative to the substrate by an actuator and a stage. A plurality of sensors detect the position of the stamp relative to substrate. A method of using the printing tool that includes a real-time feedback for consistent and accurate application of force during the printing of the substrate. The stamp head includes a pressure chamber carrying the stamp. The stamp backing is deflected prior to contact of the stamp with the substrate to form a minimum point and the stamp backing and the stamp is returned to a plane to create a printing propagation contact. An apparatus has a master backing and a stamping backing in close proximity and the stamp material drawn in through a vacuum. The stamp is separated from the master by use of a parting fluid.
Owner:MASSACHUSETTS INST OF TECH

Fabrication method of organic thin-film transistors

This invention discloses a fabrication method of organic thin-film transistors (OTFTs) using the micro-contact printing. The OTFT can be of the bottom-gate or top-gate configuration. The micro-contact printing operation of this fabrication method does not require clean-room environment and high processing temperature, and does not have the problem of 2D shrinkage of the printed patterns either. Furthermore, the pre-wetting technique employed in the micro-contact printing results in improved fidelity in the pattern transfer and solves the problems of pairing and cross-talking between neighboring patterns.
Owner:METAL INDS RES & DEV CENT
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products