Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

286 results about "Luminescent polymers" patented technology

Advertising displays

Exemplary embodiments comprise static and dynamic advertising displays where the backlight is provided by any one of the following: LED's, organic light emitting diodes (OLED), field emitting display (FED), light emitting polymer (LEP), and organic electro-luminescence (OEL). The backlights for both the static and dynamic advertising displays may be constructed of multiple tiles of lights, such that a single tile may be replaced without having to replace the entire backlight assembly. The display may be mounted on a vertical surface, and components may be repaired or replaced without having to remove the entire display from its mounted position.
Owner:MFG RESOURCES INT INC

Advertising displays

Exemplary embodiments comprise static and dynamic advertising displays where the backlight is provided by any one of the following: LED's, organic light emitting diodes (OLED), field emitting display (FED), light emitting polymer (LEP), and organic electro-luminescence (OEL). The backlights for both the static and dynamic advertising displays may be constructed of multiple tiles of lights, such that a single tile may be replaced without having to replace the entire backlight assembly. The display may be mounted on a vertical surface, and components may be repaired or replaced without having to remove the entire display from its mounted position.
Owner:MFG RESOURCES INT INC

Heat curable thermosetting luminescent resins

Luminescent polymers are prepared from thermosetting unsaturated polyesters, suspending fillers and phosphorescent pigments and utilized to make gel coated articles and molded, cast and fiberglass reinforced plastic (FRP) articles. The luminescent polymers show bright and long-lasting photoluminescent afterglow, strong thermostimulation of afterglow by heat and electroluminescent properties. The preferred thermosetting unsaturated polyester resins are prepared by condensing mixtures of ethylenically unsaturated and aromatic dicarboxylic acids and anhydrides with dihydric alcohols and a polymerizable vinylidene monomer. Preferred suspending fillers and thixotropic modifiers include silica, microspheres, glass fibers and other short fibers, nepheline syenite, feldspar, mica, pumice, magnesium sulfate, calcium carbonate, bentonite and the various clays and thixotropic modifiers and mixtures thereof. Preferred phosphorescent pigments include alkaline earth aluminate phosphors, zinc sulfide phosphors and mixtures of these phosphors.
Owner:BURNELL JONES PETER

Fluorescent carbon quantum dot, its light-emitting polymer based composite material and preparation method

The invention discloses a fluorescent carbon quantum dot, its light-emitting polymer based composite material and a preparation method thereof. More specifically, the invention provides a method for preparation of the fluorescent carbon quantum dot and its light-emitting polymer based composite material by taking a small molecule compound as a carbon source and an organosilicone monomer as a catalyst and stabilizer. By means of the combined action of the polymerizable organosilicone monomer and the small molecule carbon source, the carbon quantum dot can be formed in one step. Without purification, the reaction product only needs solvent removal to undergo further reaction so as to form a carbon quantum dot-organosilicone resin composite material. The organosilicone monomer involved in the invention can promote formation of the carbon quantum dot, and can play a role of stabilizing the carbon quantum dot, and also can be used as a polymer matrix monomer. Therefore, the obtained carbon quantum dot has stable luminescent properties, is well compatible with the polymer matrix and keeps the original luminescent properties. The method disclosed in the invention has a simple process and is easy to implement, and can be widely applied in the fields of solar cells and LED devices.
Owner:SUN YAT SEN UNIV

Led comprising a conductive transparent polymer layer with low sulfate and high metal ion content

InactiveUS6586764B2Extended service lifePrevent substantial absorption of visible lightElectroluminescent light sourcesConductive materialIon contentOligomer
The invention pertains to an organic light emitting diode (LED) comprising a transparent electrode, superposed by a layer of a conductive transparent polymer (CTP), superposed by a layer of a light emitting polymer, oligomer, or low molecular weight compound superposed by a metal cathode, characterized in that the CTP layer has a sulfate ion content of less than 7,500 ppm, and a metal ion content of more than 0.04 mmoles / g.
Owner:KONINKLIJKE PHILIPS ELECTRONICS NV

Light emitting polymer devices with improved efficiency and lifetime

In one embodiment of an OLED device, a hole injection / transport layer is added to the device structure in order to increase the number of holes injected into the emissive layer and reduce the number of electrons injected into the added hole injection / transport layer. In a first configuration of the added hole injection / transport layer, the added hole injection / transport layer is comprised of a non-doped hole transporting material that has an IP range between the highest IP value of the adjacent layer on the anode-end and the lowest IP value of the adjacent layer on the “emissive layer”-end. Optionally, in addition, nearly all electron affinities of the added hole injection / transport layer are less than the lowest electron affinity of the adjacent layer on the “emissive layer”-end. In a second configuration of the added hole injection / transport layer, this layer is formed by doping the hole transport material. The dopant is able to abstract electrons from the hole transporting material. By doping the hole transport material, the IP range of the hole transporting material is broadened. In addition or alternatively, the doping produces more HOMO energy states thus allowing more holes to occupy these intermediate states at any one time.
Owner:OSRAM OPTO SEMICONDUCTORS GMBH

Devices, Structures, Materials and Methods for Vertical Light Emitting Transistors and Light Emitting Displays

Devices, structures, materials and methods for vertical light emitting transistors (VLETs) and light emitting displays (LEDs) are provided. In particular, architectures for vertical polymer light emitting transistors (VPLETs) for active matrix organic light emitting displays (AMOLEDs) and AMOLEDs incorporating such VPLETs are described. Porous conductive transparent electrodes (such as from nanowires (NW)) alone or in combination with conjugated light emitting polymers (LEPs) and dielectric materials are utilized in forming organic light emitting transistors (OLETs). Combinations of thin films of ionic gels, LEDs, porous conductive electrodes and relevant substrates and gates are utilized to construct LETs, including singly and doubly gated VPLETs. In addition, printing processes are utilized to deposit layers of one or more of porous conductive electrodes, LEDs, and dielectric materials on various substrates to construct LETs, including singly and doubly gated VPLETs.
Owner:ATOM H2O LLC

White electroluminescent polymer and organic electroluminescent device using the same

InactiveUS6942931B2High efficiency stabilityHigh electrical stabilityDischarge tube luminescnet screensElectroluminescent light sourcesHydrogen atomAlkoxy group
A white electroluminescent polymer having a 3,3′-bicarbazyl group incorporated into a polymeric main chain of polyarylene, represented by the Formula 1: in which Ar is an aromatic group having 6 to 26 carbon atoms, or a heteroaromatic group having 4 to 14 carbon, in which the aromatic group may be substituted with alkyl group, alkoxy group or amine group, each having 1 to 12 carbon atoms; R is a hydrogen atom, linear, branched or cyclic alkyl group having 1 to 12 carbon atoms, or an aromatic group having 6 to 14 carbon atoms, in which the aromatic group may be substituted with alkyl group, alkoxy group or amine group, each having 1 to 12 carbon atoms; and m and n may be the same or different, and satisfy the following relationships 0.1≦m / (m+n)≦0.9 and 0.1≦n / (m+n)≦0.9. The present inventive white electroluminescent polymer is capable of overcoming the limits of conventional polymer blending systems.
Owner:SAMSUNG DISPLAY CO LTD

Luminescent-polymer composition

A light-emitting polymer composition comprising a light-emitting polymer and an ion pair, wherein the ion pair has a negative ion of a specific structure in which one group 13 atom and is bonding to an aryl group having an electron-withdrawing group, or a heterocyclic group having an electron-withdrawing group, directly or through a connecting group; or two or more group 13 atoms, and all the atoms are respectively bonding to an aryl group having an electron-withdrawing group, or a heterocyclic group having an electron-withdrawing group, directly or through a connecting group.
Owner:SUMITOMO CHEM CO LTD

Class of bridged biphenylene polymers

Luminescent polymers having doubly- or multiply-bridged biphenylene repeat units are provided, which are particularly suited as electroluminescent polymers. Monomers necessary for the synthesis of the multiply bridged biphenylene polymers are provided, as are electroluminescent devices utilizing these polymers.
Owner:SUMITOMO CHEM CO LTD

Ionic salt combinations in polymer electroluminescent inks

Luminescent ink formulations containing multiple salts selected for good ionic mobility, thermal stability, compatibility with light emitting polymers, good solubility in ink solvents, and electrochemical stability improve the performance of electroluminescent ink. As one salt may not contain all the required properties, a combination of salts is chosen based on the physical and chemical properties of different salts. When multiple salts are incorporated into a light emitting polymer layer, devices show improved lifetime and overall device performance.
Owner:SUMITOMO CHEM CO LTD

Light emitting polymer

A process for forming a light emitting polymer wherein photopolymerization is carried out using a reactive mesogen having an endgroup susceptible to photopolymerization, e.g., by a radical polymerization process. Also, the light emitting polymer produced and methods for using the light emitter in displays, backlights, electronic apparatus and security viewers.
Owner:HULL UNIV OF

Nanoparticles of light emissive polymers and preparation method thereof

Disclosed are nanoparticles of a light emissive polymer, comprising nanoparticles of a cyano-substituted poly(arylene vinylene) polymer; and a biocompatible surfactant adsorbed to the surface of the nanoparticles of the polymer, and preparation method thereof, wherein the method comprises: (1) uniformly mixing a dialdehyde monomer represented by a general formula OHC—Ar1—CHO, a dicyanide monomer represented by a general formula NC—Ar2—CN, and a liquid surfactant; (2) adding water to the resulting mixture to prepare an aqueous micelle dispersion; and (3) adding a polymerization catalyst to the aqueous micelle dispersion, followed by carrying out colloidal polymerization of the resulting mixture at room temperature under an atmosphere. The nanoparticles of the light emissive polymer of the invention are stabilized with a biocompatible surfactant, so that it can form a stable aqueous dispersion phase, and has particle size and fluorescence efficiency suitable for a biomolecular marker or a cell or in vivo imaging; therefore, it can be used as a cell or in vivo light emission contrast agent.
Owner:KOREA INST OF SCI & TECH

Method for preparing tw-dimension ordered nano ring, nano hole and nano self-assembling single layer film

The present invention relates to a method for preparing two-dimensional ordered nano ring, nano hole and nano self-assembled single-layer film. Said invention adopts double-substrate method to prepare three-dimensional ordered colloidal crystal body formed from monodisperse polymer microsphere or monodisperse SiO2 microsphere between two substrates, then the internal voids of colloidal crystal body between two substrates can be filled with inorganic or organic component solution with a certain concentration, and then the solvent is volatilized, the colloidal crystal template is removed, so that the two-dimensional ordered nano ring, nano hole and nano self-assembled single-layer film can be obtained on the substrate.
Owner:JILIN UNIV

Pointer instrument

In a pointer instrument (1) having a pointer shaft (12) that deflects a pointer flag (10), the pointer flag (10) can be illuminated by means of a light source (14). For this purpose, the light source (14) is formed, for example, as a light-emitting polymer (13), which is applied between the pointer flag (10), which is formed at the same time as an electrode, and a further, transparent electrode (15), and emits light of any desired coloration under appropriate electrical excitation. The pointer flag (10) can assume any desired shape as the result of using such a light source (14) that can be shaped. In particular, multiple curvatures can be represented without differences in brightness occurring in this case.
Owner:CONTINENTAL AUTOMOTIVE GMBH

Planar electroluminescent devices and uses thereof

The present invention provides a planar electroluminescence (EL) device comprising a substrate layer, an electrode layer, a light emitting layer, and a modulating layer, wherein the electrode layer comprises a plurality of electrodes arranged on a same level over the substrate layer, and there is no contact between adjacent electrodes. In one embodiment, the device further comprises a hole injection layer (HIL), a hole transport layer (HTL), an electron injection layer (EIL) and an electrode transport layer (ETL). In one embodiment, the light emitting layer comprises organic light emitting polymers or organic light emitting molecules. The device of the present invention would emit light when liquid, polar component, or conductive solution is written directly on the light emitting layer. In one embodiment, the device can emit light for prolonged period when the light emitting layer is coated or deposited with conductive material.
Owner:PEKING UNIV SHENZHEN GRADUATE SCHOOL

Light emitting polymer

There is provided a process for forming a light emitting polymer comprising photopolymerization of a reactive mesogen having an endgroup which is susceptible to photopolymerization e.g. by a radical polymerization process. Also provided are methods for using the light emitter in displays, backlights, electronic apparatus and security viewers.
Owner:HULL UNIV OF

Opto-Electrical Devices and Methods of Making the Same

An opto-electrical device comprising: a first electrode for injecting charge carriers of a first polarity; a second electrode for injecting charge carriers of a second polarity; and a layer of organic material disposed between the first and second electrodes, the layer of organic material comprising a blend of a first charge transporting and / or light-emissive polymer and a second charge transporting and / or light-emissive polymer, wherein at least the first polymer is cross-linked providing a first cross-linked matrix in which the second polymer is disposed.
Owner:CDT OXFORD +1

Methods for identity verification using transparent luminescent polymers

Disclosed are methods of using a transparent, luminescent polymer for transparent marking and / or labeling for identity verification purposes. Also disclosed are sheets, films, markers, labels and taggants comprising transparent, luminescent polymers. Also disclosed are articles labeled with a transparent, luminescent polymer. This invention particularly relates to use of transparent, luminescent polymer compositions comprising ethylene (meth)acrylic acid copolymers and rare earth ions and transparent, luminescent polymer compositions comprising methyl (meth)acrylate / (meth)acrylic acid copolymers, fatty acids and rare earth ions for these purposes.
Owner:EI DU PONT DE NEMOURS & CO

Light emitting polymer composition and polymer light emitting device

A light emitting polymer composition comprising a light emitting polymer and a compound selected from the following formulae (1a) to (1d):(wherein, X represents an atom or atomic group forming a 5-membered or 6-membered ring together with four carbon atoms on two benzene rings in the formula, Q and T represent each independently a hydrogen atom, halogen atom, alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, alkenyl group, alkynyl group, arylalkenyl group, arylalkynyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, substituted amino group, amide group, acid imide group, acyloxy group, mono-valent heterocyclic group, heteroaryloxy group, heteroarylthio group, cyano group or nitro group).
Owner:SUMITOMO CHEM CO LTD

Liquid crystal display device and light emitting structure with photonic band gap transparent electrode structures

An LCD device for displaying an image includes pixel control electrodes constructed as a transparent metal stack having a photonic band gap (PBG) structure that transmits a visible range of wavelengths and suppresses a non-visible range of wavelengths. A liquid crystal layer between the pixel control electrodes controls the transmission of light in response to a voltage applied across the pixel control electrodes. A light emitting structure (LES), such as a light emitting diode (LED) or light emitting polymer (LEP) device includes a cathode electrode, a substrate, an active layer for emitting visible light, and a transparent anode electrode having a PBG structure.
Owner:GOVERNMENT OF THE UNITED STATES SEC OF THE ARMY DEPT OF THE ARMY - OFFICE OF THE SEC +1

Light emitting polymer

There is provided a process for forming a light emitting polymer comprising photopolymerization of a reactive mesogen having an endgroup which is susceptible to photopolymerization e.g. by a radical polymerization process. Also provided are methods for using the light emitter in displays, backlights, electronic apparatus and security viewers.
Owner:HULL UNIV OF +1

Devices, structures, materials and methods for vertical light emitting transistors and light emitting displays

Devices, structures, materials and methods for vertical light emitting transistors (VLETs) and light emitting displays (LEDs) are provided. In particular, architectures for vertical polymer light emitting transistors (VPLETs) for active matrix organic light emitting displays (AMOLEDs) and AMOLEDs incorporating such VPLETs are described. Porous conductive transparent electrodes (such as from nanowires (NW)) alone or in combination with conjugated light emitting polymers (LEPs) and dielectric materials are utilized in forming organic light emitting transistors (OLETs). Combinations of thin films of ionic gels, LEDs, porous conductive electrodes and relevant substrates and gates are utilized to construct LETs, including singly and doubly gated VPLETs. In addition, printing processes are utilized to deposit layers of one or more of porous conductive electrodes, LEDs, and dielectric materials on various substrates to construct LETs, including singly and doubly gated VPLETs.
Owner:ATOM H2O LLC

Luminescent fiber and material thereof

A luminescent fiber material suitable for being made through an electro-spinning process is provided. The luminescent fiber material includes a blend of a conjugated luminescent polymer and a transparent non-conjugated polymer. The luminescent fiber made by the material has a diameter about 50-3000 nm.
Owner:TAIWAN TEXTILE RESEARCH INSTITUTE

Light-emitting polymer and organoelectroluminescent display using the same

A spirofluorene-type of a blue light-emitting polymer including an indenofluorene repeating unit having a spiroanthracene structure, and an organic electroluminescent display using the polymer. The brightness and efficiency property of the organic electroluminescent display are improved.
Owner:SAMSUNG DISPLAY CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products