Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

177 results about "Dermal fibroblast" patented technology

Dermal fibroblasts are cells within the dermis layer of skin which are responsible for generating connective tissue and allowing the skin to recover from injury. Using organelles (particularly the rough endoplasmic reticulum), dermal fibroblasts generate and maintain the connective tissue which unites separate cell layers. Furthermore, these dermal fibroblasts produce the protein molecules including laminin and fibronectin which comprise the extracellular matrix. By creating the extracellular matrix between the dermis and epidermis, fibroblasts allow the epithelial cells of the epidermis to affix the matrix, thereby allowing the epidermal cells to effectively join together to form the top layer of the skin.

Tissue-like organization of cells and macroscopic tissue-like constructs, generated by macromass culture of cells, and the method of macromass culture

Three-dimensional tissue-like organization of cells by high cell-seeding-density culture termed as macromass culture is described. By macromass culture, cells can be made to organize themselves into a tissue-like form without the aid of a scaffold and three-dimensional macroscopic tissue-like constructs can be made wholly from cells. Tissue-like organization and macroscopic tissue-like constructs can be generated from fibroblastic cells of mesenchymal origin (at least), which can be either differentiated cells or multipotent adult stem cells. In this work, tissue-like organization and macroscopic tissue-like constructs have been generated from dermal fibroblasts, adipose stromal cells-derived osteogenic cells, chondrocytes, and from osteoblasts. The factor causing macroscopic tissue formation is large scale culture at high cell seeding density per unit area or three-dimensional space, that is, macromass culture done on a large scale. No scaffold or extraneous matrix is used for tissue generation, the tissues are of completely cellular origin. No other agents (except high cell-seeding-density) that aid in tissue formation such as tissue-inducing chemicals, tissue-inducing growth factors, substratum with special properties, rotational culture, etc, are employed for tissue formation. These tissue-like masses have the potential for use as tissue replacements in the human body. Tissue-like organization by high cell-seeding-density macromass culture can also be generated at the microscopic level.
Owner:RELIANCE LIFE SCI PVT

Skin Care Compositions and Treatments

The invention is directed compositions containing growth agents synthesized from cultured cells from skin. Skin cells such as keratinocytes and dermal fibroblasts are cultured in vitro in cell medium and in the course of culture the cultured cells synthesize and secrete agents into the cell medium. The medium containing agents are collected and incorporated into pharmaceutical or cosmetic preparations to treat an individual. The preparation is applied and has a rejuvenating effect on the cells and tissue.
Owner:ORGANOGENESIS

Elastin protective polyphenolics and methods of using the same

ActiveUS20090110709A1Prevent premature proteolyticEfficient elastogenesisCosmetic preparationsBiocideFiberPolyphenol
Dermal fibroblasts permanently loose their ability to synthesize elastin, the major component of elastic fibers, shortly after puberty. This progressive loss of elastic fibers cannot be replaced, resulting in the physical signs of aging. The present invention provides methods and compositions containing the polyphenols ellagic acid and / or tannic acid for protection against degradation of cutaneous elastic fibers by the elastolytic enzymes. The use of ellagic acid and / or tannic acid increased the overall deposition of elastic fibers in healthy and damaged skin cells. The protection of both intra-tropoelastin and extra-cellular mature elastic fibers from proteolytic enzymes by ellagic acid and tannic acid caused an increase in the net deposition of elastic fibers. Therefore, embodiments of the present invention provide methods and composition for the treatment of skin and prevention and treatment of degradation of dermal elastic fibers.
Owner:ELASTOGENESIS LLC +1

Compositions for elastrogenesis and connective tissue treatment

The present invention describes therapeutic compositions comprising one or more minerals, including trivalent iron, divalent manganese and salts thereof, suitable in facilitating synthesis and deposition of connective tissue matrix, particularly rich of elastin and collagen, and mitogenic potential in human dermal fibroblasts. It also describes the phenomenon in which stimulation of elastogenesis by arterial SMC associates with a net decrease in proliferation of these cell types. The present invention also describes methods of treatment of human skin fibroblasts and arterial smooth muscle cells. The therapeutic compositions of the present invention comprise one or more of trivalent iron or divalent manganese or salts thereof and may be combined with an elastic tissue digest.
Owner:HOSPITAL FOR SICK CHILDREN +1

Tissue-like organization of cells and macroscopic tissue-like constructs, generated by macromass culture of cells and the method of macromass culture

Three-dimensional tissue-like organization of cells by high cell-seeding-density culture termed as macromass culture is described. By macromass culture, cells can be made to organize themselves into a tissue-like form without the aid of a scaffold and three-dimensional macroscopic tissue-like constructs can be made wholly from cells. Tissue-like organization and macroscopic tissue-like constructs can be generated from fibroblastic cells of mesenchymal origin (at least), which can be either differentiated cells or multipotent adult stem cells. In this work, tissue-like organization and macroscopic tissue-like constructs have been generated from dermal fibroblasts, adipose stromal cells-derived osteogenic cells, chondrocytes, and from osteoblasts. The factor causing macroscopic tissue formation is large scale culture at high cell seeding density per unit area or three-dimensional space, that is, macromass culture done on a large scale. No scaffold or extraneous matrix is used for tissue generation, the tissues are of completely cellular origin. No other agents (except high cell-seeding-density) that aid in tissue formation such as tissue-inducing chemicals, tissue-inducing growth factors, substratum with special properties, rotational culture, etc, are employed for tissue formation. These tissue-like masses have the potential for use as tissue replacements in the human body. Tissue-like organization by high cell-seeding-density macromass culture can also be generated at the microscopic level.
Owner:RELIANCE LIFE SCI PVT
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products