Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

479results about How to "Improve uniformity of light emission" patented technology

Flat lamp device with multi electron source array

Disclosed is a flat lamp device, including lower and upper glass plates facing each other in parallel; spacers interposed between the plates to keep distance therebetween; a cathode electrode singly formed over the entire upper surface of the lower glass plate; an insulation film formed on the cathode electrode; semiconductor films independently patterned on the insulation film at intervals; a catalyst-metal layer laminated on the buffer metal to improve the adhesion of catalyst metal formed on the semiconductor films; carbon nano-tubes formed on the catalyst-metal layer; a grid electrode installed on the carbon nano-tubes between the plates to guide electron emission from the carbon nano-tubes with a mesh shape having an opening for passage of the emitted electrons; an anode electrode formed below the upper glass plate to accelerate the emitted electrons; and a fluorescent layer formed below the anode electrode to emit light by collision with the accelerated electrons.
Owner:LEE SEUNG HO

Quantum dot luminescent layer and device, and preparation methods thereof, luminescence module and display device

The present invention discloses a quantum dot luminescent layer and device, and preparation methods thereof, a luminescence module and a display device. The preparation method of the quantum dot luminescent layer comprises the steps: the quantum dots having the surfaces coated with ligand are dissolved in solvent to obtain the quantum dot solution; the quantum dot solution is deposited on the substrate or a function layer by employing the solution method to obtain a quantum dot luminescent layer; the quantum dot luminescent layer is arranged in a vacuum cavity, and organic metal compounds are pumped in to process for 0.5-30 mins, wherein the pressure in the cavity is 0.01-1mbar, the partial pressure of the organic metal compounds after gasification is 0.001-0.1mbar, the temperature in the cavity is 10-25 DEG C; and the quantum dot luminescent layer is taken out to obtain the quantum dot crosslinking luminescent layer. The quantum dot film is not only uniform flat and has a stable film, so that the quantum dot film is difficult to be redissolved to take away or wash away by the solvent when the subsequent other function layers are deposited so as to effectively improve the luminescence uniformity and the stability of the QLED.
Owner:TCL CORPORATION

Organic light emitting display devices and methods of manufacturing organic light emitting display devices

An inter-layer bridging connection is provided in an organic light emitting display and a method of manufacturing the same is provided. The organic light emitting display device is subdivided into a major interior, first region I, an auxiliary power coupling region II and a peripheral power line region III where the second region (II) extends at least partially around the first region, and the third region (III) extends at least partially around the second region. Additionally, the display device includes a substrate, a first electrode, a second electrode, an interposed light emitting structure, a power line, a conductive pattern and an auxiliary electrode. The first electrode and the light emitting structure are both disposed in the first region. The power line is disposed in the third region. The second electrode is at least partially transparent and is disposed in the first region and extends into the second region (II). The conductive pattern electrically connects the second electrode with the power line. The auxiliary electrode has reduced resistivity per unit area and directly contacts the second electrode. The auxiliary electrode is disposed in the second region.
Owner:SAMSUNG DISPLAY CO LTD

III-group nitride light-emitting diode (LED) and manufacturing method thereof

ActiveCN102185062AIncreased longitudinal resistivityImprove crystal qualitySemiconductor devicesNitrideLight-emitting diode
The invention discloses a III-group nitride light-emitting diode (LED) and a manufacturing method thereof. The LED comprises a substrate and a semiconductor epitaxial laminate which is laminated on the substrate, wherein the semiconductor epitaxial laminate sequentially comprises an N type layer, a luminescent layer and a P type layer from top to bottom. The LED is characterized in that: an N type layer table face is formed in the N type layer by etching a part of the semiconductor epitaxial laminate; an N type electrode is arranged on the N type layer table face; a P type electrode is arranged on the upper surface of the un-etched part of the P type layer; the N type layer also comprises a uniformly doped layer of which the doping concentration is consistent and a modulation doped layer of which the doping concentration is changeable; and the modulation doped layer is arranged between the uniformly doped layer and the luminescent layer. A doped mode of the modulation doped layer is gradual transition doping which connects uniformly doped layer and the luminescent layer of which the doping concentration is consistent. The concentration change trend is decrease progressively change from the uniformly doped layer to the luminescent layer. By the LED and the manufacturing method, the crystal quality and the luminance uniformity can be obviously improved, and the lighting effect is improved.
Owner:SUN YAT SEN UNIV

Luminous display with round tip-shaped double-gate controlled spring water-sprayed cathode structure

The invention discloses a luminous display with round tip-shaped double-gate controlled spring water-sprayed cathode structure, which comprises a vacuum chamber formed by a front glass sealing panel, a back glass sealing panel and a transparent glass frame. The front glass sealing panel is provided with an anode conductive layer, a luminescent layer on the anode conductive layer and an anode outer wiring layer connected with the anode conductive layer. The back glass sealing panel is provided with the round tip-shaped double-gate controlled spring water-sprayed cathode structure. The display also comprises isolation walls and getter attached components in the vacuum chamber. The luminous display of the invention has the advantages of being manufactured at low production cost and through simple production process while achieving high brightness.
Owner:山东千沐云物联科技股份有限公司

Electroluminescence device

An electroluminescence device includes a substrate, a pixel array, lead line sets, driving devices and at least one power transmission pattern. The substrate has a display region and a peripheral circuit region. The pixel array is disposed in the display region and includes pixel structures. Each pixel structure has at least one active element and a light emitting element. The lead line sets are disposed in the peripheral circuit region and electrically connected to the pixel array, and each lead line set has multiple lead lines. Each driving device is electrically connected to one lead line set. The power transmission pattern is disposed in the peripheral circuit region and between adjacent lead line sets. One end of the power transmission pattern is electrically connected to the light emitting element and another end of the power transmission pattern is electrically connected to one corresponding driving device.
Owner:AU OPTRONICS CORP

Light emitting device

A light emitting device includes a carrier, a light emitting element disposed and electrically connected to the carrier, and a transparent plate disposed on the carrier and including a flat-portion and a lens-portion. The lens-portion covers the light emitting element and has a light incident surface, a light emitting surface, a first side surface and a second side surface. The light emitting element is adapted to emit a beam. A first partial beam of the beam passes through the light incident surface and emerges from the light emitting surface. A second partial beam of the beam passes through the light incident surface and is transmitted to the first side surface or the second side surface, and the first side surface or the second side surface reflects at least a part of the second partial beam of the beam which then emerges from the light emitting surface.
Owner:EVERLIGHT ELECTRONICS

Organic electroluminescence device for reducing patterning graphene electrodes based on laser and manufacturing method therefor

The invention belongs to the technical field of photoelectron and particularly relates to an organic electroluminescence device for reducing patterning graphene electrodes based on laser and a manufacturing method for the organic electroluminescence device. The organic electroluminescence device consists of a substrate, a gold electrode, the micron-dimension patterning graphene electrodes, an organic function layer and a cathode in sequence, wherein the gold electrode serves as an extraction electrode and is in a channel structure, the micron-dimension patterning graphene electrodes are lapped on the gold electrode at the two sides of each channel, and the micron-dimension patterning graphene electrodes are prepared by a laser write-through machining system capable of realizing laser point-by-point scanning. The obtained graphene electrodes are lower in the surface roughness and smoother in the surface, and therefore, the bottom-emission organic electroluminescence device prepared by the electrodes are higher in the degree of light-emitting homogeneity. The organic electroluminescence device and the manufacturing method break through the conventional concept for manufacturing the original large-area devices, the areas of the electrodes are reduced to the micron dimension, and patterns are led into the electrodes, so that the light-emitting area of the device is in a miniaturized pattern structure, thereby combining the organic electroluminescence device and the laser micro-nanomachining skillfully.
Owner:中科精仪科技(广东)有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products