Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1682results about "Manufacturing heating elements" patented technology

Continuous liquid interphase printing

A method of forming a three-dimensional object is carried out by providing a carrier and an optically transparent member having a build surface, the carrier and the build surface defining a build region therebetween; filling the build region with a polymerizable liquid; irradiating the build region through the optically transparent member to form a solid polymer from the polymerizable liquid and advancing the carrier away from the build surface to form the three-dimensional object from the solid polymer, while also concurrently with the irradiating and / or advancing steps: (i) continuously maintaining a dead zone of polymerizable liquid in contact with the build surface, and (ii) continuously maintaining a gradient of polymerization zone between the dead zone and the solid polymer and in contact with each thereof. The gradient of polymerization zone comprises the polymerizable liquid in partially cured form (e.g., so that the formation of fault or cleavage lines between layers of solid polymer in the three-dimensional object is reduced). Apparatus for carrying out the method is also described.
Owner:CARBON INC

Machine and a Method for Additive Manufacturing with Continuous Fiber Reinforcements

Several examples of additive manufacturing machines and methods for depositing a bead of composite polymer material having continuous fiber reinforcement are disclosed. A length of fiber reinforcement is provided to a nozzle. The fiber reinforcement is embedded into a stream of a base polymer material at the nozzle and deposited as a bead of composite polymer material having fiber reinforcement. The fiber reinforcement may be dry or pre-impregnated with a reinforcing polymer. The additional strength of the composite polymer material having fiber reinforcement allows for true, three-dimensional printing of articles having unsupported regions.
Owner:UT BATTELLE LLC

Continuous liquid interphase printing

A method of forming a three-dimensional object is carried out by providing a carrier and an optically transparent member having a build surface, the carrier and the build surface defining a build region therebetween; filling the build region with a polymerizable liquid; irradiating the build region through the optically transparent member to form a solid polymer from the polymerizable liquid and advancing the carrier away from the build surface to form the three-dimensional object from the solid polymer, while also concurrently with the irradiating and / or advancing steps: (i) continuously maintaining a dead zone of polymerizable liquid in contact with the build surface, and (ii) continuously maintaining a gradient of polymerization zone between the dead zone and the solid polymer and in contact with each thereof. The gradient of polymerization zone comprises the polymerizable liquid in partially cured form (e.g., so that the formation of fault or cleavage lines between layers of solid polymer in the three-dimensional object is reduced). Apparatus for carrying out the method is also described.
Owner:CARBON INC

Three-dimensional printing system, three-dimensional printing method, molding device, fiber-containing object, and production method thereof

A three-dimensional printing system (1) includes: a head (2) to which a first continuous material (FL) including a resin and a second continuous material (FB) including fibers are fed; a platform (3) on which a printing material based on the first and second continuous materials from the head is stacked; a cutting device (10) which is capable of cutting at least fibers; and a controller (5) which controls an operation device including at least one of the head, the platform, and the cutting device.
Owner:NIHON UNIVERSITY +1

Powder distribution in additive manufacturing

An additive manufacturing method for forming a three-dimensional article through successive fusion of parts of at least one layer of a powder bed provided on a work table. Providing at least one rotatable powder container above said work table, said powder container comprising at least one exit for providing powder to a powder table arranged beside said work table, at least one opening inside said container is spatially separated from and connected to said at least one exit. Ejecting a fixed amount of powder from said powder container during at least one predetermined segment of rotational angles of said powder container, from the exit of said powder container onto said powder table, wherein said fixed amount is determined by the shape and size of the at least one opening inside said container. Distributing said powder onto said work table with a powder distributor.
Owner:ARCAM AB

Method and apparatus for additive manufacturing

The present invention relates to a method for forming a three-dimensional article through successive fusion of applied powder. Said method comprising the steps of: providing at least one powder hopper comprising powder to be used for forming said three-dimensional article, providing a predetermined amount of powder at a build support, directing an energy beam over said build support causing at least a portion of said powder to sinter and causing at least a portion of said powder to bond to said build support, directing an energy beam over said build support causing said powder to fuse in selected locations according to a model to form a first portion of said three-dimensional article, rotating said build support around an axis of rotation for creating said three-dimensional article, which three-dimensional article is build up layer by layer in a radial direction with respect to said axis of rotation.
Owner:ARCAM AB

Devices, systems, and methods for the fabrication of tissue

Described herein are bioprinters comprising: one or more printer heads, wherein a printer head comprises a means for receiving and holding at least one cartridge, and wherein said cartridge comprises contents selected from one or more of: bio-ink and support material; a means for calibrating the position of at least one cartridge; and a means for dispensing the contents of at least one cartridge. Further described herein are methods for fabricating a tissue construct, comprising: a computer module receiving input of a visual representation of a desired tissue construct; a computer module generating a series of commands, wherein the commands are based on the visual representation and are readable by a bioprinter; a computer module providing the series of commands to a bioprinter; and the bioprinter depositing bio-ink and support material according to the commands to form a construct with a defined geometry.
Owner:ORGANOVO

Powder pre-processing for additive manufacturing

The present invention relates to a method for removing moisture from powder to be used in an additive manufacturing process for forming a three-dimensional article through successive fusion of parts of at least one layer of a powder bed provided on a work table, which parts corresponds to successive cross sections of the three-dimensional article, characterized in that said method comprising the steps of: providing at least a first powder tank and at least at least a second powder tank, providing a predetermined amount of powder on a movable table inside said first powder tank, heating the top surface of the powder in said first powder tank to a predetermined temperature interval for removing moisture from said powder, raising said movable table a predetermined distance, moving a predetermined thickness of the powder material from said first powder tank to said second powder tank.
Owner:ARCAM AB

Methods and Apparatus for Selectively Combining Particulate Material

A method of selectively combining particulate material, comprising: (i) providing a layer of particulate material to a part bed; (ii) providing radiation to sinter a portion of the material of the layer; (iii) providing a further layer of particulate material overlying the prior layer of particulate material including the previously sintered portion of material; (iv) providing radiation to sinter a further portion of the material within the overlying further layer and to sinter said further portion with the previously sintered portion of material in the prior layer; (v) successively repeating blocks (iii) and (iv) to form a three-dimensional object; and wherein at least some of the layers of particulate material are pre-heated with a heater prior to sintering a portion of the material of the respective layer, the heater being configured to move relative to, and proximate, the particulate material.
Owner:LOUGHBOROUGH UNIV

Chute for Laser Sintering Systems

There is provided improved laser sintering systems that increase the powder density and reduce anomalies of the powder layers that are sintered, that measure the laser power within the build chamber for automatic calibration during a build process, that deposit powder into the build chamber through a chute to minimize dusting, and that scrubs the air and cools the radiant heaters with recirculated scrubbed air. The improvements enable the laser sintering systems to make parts that are of higher and more consistent quality, precision, and strength, while enabling the user of the laser sintering systems to reuse greater proportions of previously used but unsintered powder.
Owner:3D SYST INC

Method and apparatus for additive manufacturing

The present invention relates to a method for forming a three-dimensional article through successive fusion of applied powder. Said method comprising the steps of: providing at least one powder hopper comprising powder to be used for forming said three-dimensional article, providing a predetermined amount of powder at a build support, directing an energy beam over said build support causing at least a portion of said powder to sinter and causing at least a portion of said powder to bond to said build support, directing an energy beam over said build support causing said powder to fuse in selected locations according to a model to form a first portion of said three-dimensional article, rotating said build support around an axis of rotation for creating said three-dimensional article, which three-dimensional article is build up layer by layer in a radial direction with respect to said axis of rotation.
Owner:ARCAM AB

Heated build platform and system for three dimensional printing methods

An apparatus performing as a base for printing 3D objects using high temperature thermoplastics employing additive manufacturing methods is provided. The apparatus comprises a heated build platform, a thin removable plate secured on top of the build platform, a high temperature polymer coating applied over the removable plate, and surface treatment of high temperature polymer coating to maintain adhesion between 3D object and printing surface. Also, the removable plate has low coefficient of thermal expansion compared to build platform below it, for avoiding bowing of the plate as it is heated due to heated build platform, hence providing flat printing surface. The thin removable plate allows 3D objects to pop off the plate upon cooling, without damaging the polymer coating, the plate, or the object. It also allows for continuous operation of printing, while the plate is released for cooling, a new plate is installed for printing.
Owner:AREVO INC

Method and apparatus for 3D fabrication

ActiveUS20160031159A1Preventing the high temperature from spreading into undesirable areasEasy to disassembleConfectioneryManufacturing heating elements3d fabricationEngineering
An apparatus for use in 3D fabrication includes a heat sink, a melt tube extending through the heat sink, the melt tube having a first end and an opposite second end and adapted for melting filament or other material as the material is conveyed from the first end to the second end, a pen tip having an opening therein for ejecting melted material, the pen tip at the second end of the melt tube, and a pen tip holder for securely holding the pen tip during printing, the pen tip holder having a heater element associated therewith.
Owner:SCIPERIO

Powder distribution in additive manufacturing

An additive manufacturing method for forming a three-dimensional article through successive fusion of parts of at least one layer of a powder bed provided on a work table. Providing at least one rotatable powder container above said work table, said powder container comprising at least one exit for providing powder to a powder table arranged beside said work table, at least one opening inside said container is spatially separated from and connected to said at least one exit. Ejecting a fixed amount of powder from said powder container during at least one predetermined segment of rotational angles of said powder container, from the exit of said powder container onto said powder table, wherein said fixed amount is determined by the shape and size of the at least one opening inside said container. Distributing said powder onto said work table with a powder distributor.
Owner:ARCAM AB

Method and device for the production of a three-dimensional object by means of sintering

A process and a device for producing a three-dimensional object is provided, with which process or device the object is produced by layer-wise solidification of a pulverulent material by sintering of the material at the points corresponding to the cross-section of the object by means of the action of radiation energy. The process comprises the application of a layer of the pulverulent material onto a substrate or a previously sintered layer, pre-heating of the pulverulent material to a working temperature below the temperature at which the powder is sintered and sintering of the material at the points corresponding to the cross-section of the object in the layer, wherein a step of controlled heating of an applied powder layer and of determining the quantity of heat taken up by the powder per (FIG. 3) temperature interval for at least two temperature intervals is carried out.
Owner:EOS ELECTRO OPTICAL SYST

Preheating using a laser beam

A laser deposition apparatus is provided which uses a laser beam to manufacture and / or repair a work piece by depositing a material on a work piece and controlling a temperature of the work piece using a laser beam prior to, during and / or after deposition. The temperature controlling laser beam has a larger cross-sectional area than a laser beam used for deposition at the surface of the work piece.
Owner:GENERAL ELECTRIC CO

Devices, systems, and methods for the fabrication of tissue

Described herein are bioprinters comprising: one or more printer heads, wherein a printer head comprises a means for receiving and holding at least one cartridge, and wherein said cartridge comprises contents selected from one or more of: bio-ink and support material; a means for calibrating the position of at least one cartridge; and a means for dispensing the contents of at least one cartridge. Further described herein are methods for fabricating a tissue construct, comprising: a computer module receiving input of a visual representation of a desired tissue construct; a computer module generating a series of commands, wherein the commands are based on the visual representation and are readable by a bioprinter; a computer module providing the series of commands to a bioprinter; and the bioprinter depositing bio-ink and support material according to the commands to form a construct with a defined geometry.
Owner:ORGANOVO

Stereolithography machine

The invention is a stereolithography machine (1) comprising the following: a support plate (2) provided with a hole (2a); a container (3) associated with the support plate (2) and comprising a transparent bottom (3a); a radiation source (4) arranged below the support plate (2) and suited to convey a radiation beam towards the transparent bottom (3a) through the hole (2a); a temperature control unit (5) suited to maintain the support plate (2) at a predetermined temperature.
Owner:DWS SRL

System and method for direct inkjet printing of 3D objects

A direct inkjet printing system for fabricating a part by an additive manufacturing process includes an ink delivery system operative to circulate the ink, a printhead associated with the ink delivery system, the printhead operative to dispense ink from the ink delivery system through a plurality of nozzles and based on a defined pattern, a building table for receiving the dispensed ink one layer at a time based on the defined pattern, wherein the part is formed from a plurality of layers of the ink dispensed from the printhead and a drying station operative to perform a drying process on layers of the ink dispensed from the printhead on a per layer basis.
Owner:STRATASYS LTD

Method and system for thermographic inspection of additive manufactured parts

A method for inspection of additive manufactured parts and monitoring operational performance of an additive manufacturing apparatus is provided. The method includes a heating step for heating an area of a build platform on which at least one part is built by the additive manufacturing apparatus. An obtaining step is used for obtaining, in real-time during an additively manufactured build process, a thermographic scan of the area of the build platform. An evaluating step evaluates, by a processor, the thermographic scan. A determining step determines, based on the evaluating, whether an operational flaw with the additive manufacturing apparatus has occurred or a defect in the at least one part has occurred.
Owner:GENERAL ELECTRIC CO

Automatic-leveling 3D printer and printing method thereof

The invention discloses an automatic-leveling 3D printer and a printing method thereof. The printer comprises a pedestal, the pedestal is fixed with a movable support, the movable support is connected with a nozzle and a work platform, the nozzle is positioned over the work platform, the work platform is uniformly distributed with a plurality of calibrating points, the nozzle is fixed with a horizontal calibrator, and the horizontal calibrator is used for determining a vertical distance from the horizontal calibrator to each of the calibrating points. In the invention, the calibration work of the work platform and the height of the nozzle can be rapidly completed, and the best spacing between the nozzle and the platform is guaranteed in the printing process to realize the high quality of a finished printed product.
Owner:BEIJING TIERTIME TECH

Post processing three-dimensional objects formed by solid freeform fabrication

A method for removing supports from a three-dimensional object formed by solid freeform fabrication. The three-dimensional object and support structure both contain a phase change component in order to achieve the desired phase change characteristics needed for dispensing the material. The method prevents the phase change material within the three-dimensional object from migrating within the object during post processing to remove the support structure.
Owner:3D SYST INC

Apparatus and method for producing objects utilizing three-dimensional printing

InactiveUS20160096327A1Minimize warping and thermal stressImprove bindingDielectric heatingConfectioneryEngineering3 dimensional printing
A method and apparatus for the fabrication of an article made using a three-dimensional printing process. The invention includes depositing material from a print head onto a build plate located in a build chamber to form an article, heating ambient air in the build chamber to a first temperature which acts as a proper sink temperature for cooling of the article, and heating the build plate to a second temperature which is higher than the first temperature. The first and second temperatures are controlled to minimize warping and thermal stress of the article.
Owner:TE CONNECTIVITY CORP

Multi-headed auto-calibrating bioprinter with heads that heat, cool, and crosslink

The present invention relates to a three-dimensional bioprinter for printing and / or patterning a single type or multiple types of cells into different geometrical arrangements and other three-dimensional structures, such as tissues. The bioprinter comprises multiple heads that can each be loaded with a different cartridge containing a biomaterial or biological material such as cells in a solution or cells in a hydrogel. Each bioprinter head and cartridge has the ability to heat or cool using Peltier technology. The bioprinter also has the ability to auto calibrate on a bed plate configured to accept a petri dish or microtiter plate.
Owner:3D SYST INC

Phenolic resin method

The invention relates to a method, a device, a binder system, and a material system for producing components using layering technology, wherein the temperature in the building space and / or in the applied material is set to at least 70° C. and maintained for at least 2 hours. Areas on which binder has been selectively applied, solidify and form the component.
Owner:VOXELJET AG

Spray head applicable to continuous fiber reinforced composite material additive manufacturing

The invention belongs to the field of additive manufacturing, and relates to a spray head applicable to continuous fiber reinforced composite material additive manufacturing, which comprises a spray head body, an inner cavity, heat conduction blocks, a cover cap, a fiber spray head, a fiber throat pipe, a polytetrafluoroethylene pipe I, a resin spray head, a resin throat pipe, a polytetrafluoroethylene pipe II, heating rods and temperature sensors. A bonding effect of rein and fiber can be improved, and the spray heads can be prevented from being blocked and can be cleaned conveniently. The spray heads are detachably connected to the lower end of the inner cavity; the heat conduction blocks are sleeved on the spray heads; the heating rods and the temperature sensors are nested on the heat conduction blocks; the cover cap is detachably connected to the upper end of the inner cavity; the fiber throat pipe and the resin throat pipe are detachably connected onto through holes of the cover cap; the resin spray head is also detachably connected onto the through hole connected with the resin throat pipe; the polytetrafluoroethylene pipe I is sleeved in the fiber throat pipe; the fiber spray head is detachably connected to the lower end of the fiber throat pipe; the polytetrafluoroethylene pipe II is sleeved in the resin throat pipe; and the inner cavity and the cover cap are connected to form a cavity.
Owner:HARBIN INST OF TECH

5-axis continuous carbon fiber 3D printing and meta-materials, parts, structures, systems, and design methods thereby enabled

A nozzle for depositing fiber-reinforced polymer having a radiative chamber comprising an outer structure of a nozzle end; a cooling chamber coupled to the outer structure; and a filament guide tube extending into the cooling chamber.
Owner:MANTIS COMPOSITES INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products