Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

659results about "Line balance variation compensation" patented technology

Method and apparatus for level decision and optical receiver using same

In a method for deciding the level of an input signal, positive and negative signals are provided in response to the input signal. A peak of the positive signal is detected to provide a positive-peak value. A peak of the negative signal is detected to provide a negative-peak value. The positive signal and the negative-peak value are combined to provide a first combination signal. The negative signal and the positive-peak value are combined to provide a second combination signal. The first and second combination signals are compared to provide an output signal of zero or one.
Owner:LAPIS SEMICON CO LTD

Self calibrating receive path correction system in a receiver

A receiver (50) includes a self-calibrating receive path correction system for correction of I / Q gain and phase imbalances in a radio frequency signal. The system includes a signal-processing block (53), an I / Q phase imbalance detection and correction circuit (98), an I / Q gain imbalance detection and correction circuit (96), and an adaptive loop bandwidth control circuit (102). The I / Q phase imbalance detection and correction circuit (98) equalizes for the relative phase imbalance and the I / Q gain imbalance detection and correction circuit (96) equalizes for the relative gain imbalance between the I and Q channels created by the analog portion of a quadrature receiver. The adaptive loop bandwidth control circuit (102) dynamically adjusts at least one loop bandwidth for the I / Q gain imbalance detection and correction circuit (96) and the I / Q phase imbalance detection and correction circuit (98) on a slot boundary.
Owner:GOOGLE TECH HLDG LLC

Pattern-dependent error counts for use in correcting operational parameters in an optical receiver

An optical transmission network includes an optical transmitter photonic integrated circuit (TxPIC) chip, utilized in an optical transmitter and has a plurality of monolithic modulated sources integrated for multiple signal channels on the same semiconductor chip is provided with channel equalization at the optical receiver side of the network that permits one or more such integrated modulated sources in the TxPIC chip to be out of specification thereby increasing the chip yield and reducing manufacturing costs in the deployment of such TxPIC chips. FEC error counts at the FEC decoder on the optical receiver side of the network includes counters that accumulate a plurality of bit pattern-dependent error counts based on different N-bit patterns in the received data bit stream. The accumulated counts of different N-bit patterns are utilized to provide for corrections to threshold and phase relative to the bit eye pattern as well as provided for weight coefficients for the optical receiver equalization system. The deployment of this type of equalization in a digital OEO REGEN network substantially reduces, if not eliminates, the need for dispersion compensating fiber (DCF) or EDFAs in an optical link of the network and enhances the optical receiver tolerance to chromatic dispersion (CD) so that an increase in chip yield is realized for TxPIC chips not operating with acceptable operational parameters, particularly with a desired frequency chirp parameter relative to at least one of the TxPIC modulated sources.
Owner:INFINERA CORP

Pattern-dependent error counts for use in correcting operational parameters in an optical receiver

An optical transmission network includes an optical transmitter photonic integrated circuit (TxPIC) chip, utilized in an optical transmitter and has a plurality of monolithic modulated sources integrated for multiple signal channels on the same semiconductor chip is provided with channel equalization at the optical receiver side of the network that permits one or more such integrated modulated sources in the TxPIC chip to be out of specification thereby increasing the chip yield and reducing manufacturing costs in the deployment of such TxPIC chips. FEC error counts at the FEC decoder on the optical receiver side of the network includes counters that accumulate a plurality of bit pattern-dependent error counts based on different N-bit patterns in the received data bit stream. The accumulated counts of different N-bit patterns are utilized to provide for corrections to threshold and phase relative to the bit eye pattern as well as provided for weight coefficients for the optical receiver equalization system. The deployment of this type of equalization in a digital OEO REGEN network substantially reduces, if not eliminates, the need for dispersion compensating fiber (DCF) or EDFAs in an optical link of the network and enhances the optical receiver tolerance to chromatic dispersion (CD) so that an increase in chip yield is realized for TxPIC chips not operating with acceptable operational parameters, particularly with a desired frequency chirp parameter relative to at least one of the TxPIC modulated sources.
Owner:INFINERA CORP

Direct conversion receiver and DC offset reducing method

A determining section (18) and gain variation amount detecting section (9) detect a period having a possibility of a DC-component offset in an internal circuit of a direct conversion receiver increasing beyond an allowable value due to AGC operation, and during the period, a cut-off frequency of each of high-pass filters (12a to 12d) is set at a frequency higher than that in general operation, thereby rapidly converging transient responses of signals passed through the high-pass filters, while controlling precisely operation timings of reception power measuring section (16), gain calculating section (22), gain control section (23) and circuit power supply control section (24) composing an AGC loop, whereby the DC offset is prevented from increasing and stable circuit operation is assured. It is thereby possible to achieve further reductions in size and power consumption of a CDMA receiver using the direct conversion receiver.
Owner:PANASONIC CORP

Suppression of radio frequency interference and impulse noise in communications channels

A noise suppression circuit for a communications channel (10) comprises a hybrid device (11) coupled to the channel for providing a differential output signal corresponding to a received signal. A delay unit (12) delays the differential signal by a suitable amount to allow for the generation and subtraction of a noise estimate. A summing device (13) extracts a digital common mode signal from the channel, and a noise estimation unit (16) provides a common mode noise estimate signal in dependence upon a history of the common mode signal over a predetermined period of time and over a plurality of frequency bands. The common mode noise estimate signal is combined subtractively (19) with the delayed differential signal to cancel common mode noise elements of the delayed differential signal. The noise estimation unit may comprise an analysis filter bank (20) for producing a plurality of subband signals (S1-SM), each at a different one of a plurality of different frequencies, a plurality of noise detection circuits (231-23M), each for processing a respective one of the plurality of subband signals to provide a component of the common mode noise estimate signal, and a synthesis filter bank (24) for processing the common mode noise signal components to provide the noise estimate signal.
Owner:BELL CANADA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products