Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

215results about "Aircraft fire/erosion prevention" patented technology

Thermally actuated passive gas turbine engine compartment venting

A thermally actuated venting system includes a thermally actuated vent for opening a vent outlet in a gas turbine engine associated compartment with a passive thermal actuator located in the compartment based on a temperature of the compartment. Outlet may be located at or near a top of a core engine compartment, a fan compartment, or a pylon compartment. Actuator may be operably connected to a hinged door of vent for opening outlet. Actuator may be actuated by a phase change material disposed in a chamber and having a liquid state below a predetermined actuation temperature and a gaseous state above the predetermined actuation temperature. Actuator may include a thermal fuse for closing door during a fire. Thermal fuse may include at least a portion of piston rod or a cylinder wall of actuator being made of a fuse material having a melting point substantially above the predetermined actuation temperature.
Owner:GENERAL ELECTRIC CO

Method using an optical signal for detecting overheating and fire conditions in an aircraft

A fiber optic cable forms a temperature sensor arranged along an object or space to monitor the temperature thereof and detect overheating or fire conditions. An end of the sensor is con5 nected through an interface to a laser emitter and an optical receiver, which are further connected to a computer. The computer controls the laser emitter to emit a laser pulse into the sensor. The optical receiver receives the resulting reflection signal from the sensor, and provides a corresponding signal to the computer to be evaluated in connection with a nominal comparison signal. If any location of the sensor is subjected to an unacceptable temperature increase, the sensor's refractive characteristics are changed, to cause an additional reflection pulse in the reflection signal. By evaluating the amplitude and the return time of the additional reflection pulse, the temperature level and the location of the overheating condition are determined by the computer.
Owner:AIRBUS OPERATIONS GMBH

Aircraft fuel systems

An aircraft fuel system architecture which reduces the fleet-wide flammability exposure of the fuel tanks. In one embodiment, the aircraft center fuel tank fuel is cooled at certain times in a flight to reduce its flammability exposure to be similar to that of an unheated conventional metal wing fuel tank. Aircraft fuel tanks that have adjacent heat sources are also insulated to minimize heat flow into the fuel. Fuel tanks that have lower cooling properties, such as composite wing tanks are cooled at certain times during flight such that their temperatures are reduced to be similar to metal wing tanks when the fuel is flammable. A fuel tank that is pressurized relative to outside pressure at altitude having a lower flammability exposure than unpressurized tanks is combined with the cooling of fuel in the tank to reduce the fleet-wide flammability exposure of the fuel tank to be similar to that of an unpressurized metal wing tank. Fuel is cooled by recirculating flow from a tank, passing through a heat exchanger and returning to the tank to be cooled. The heat exchanger is optionally cooled by flow of air from the outside of the aircraft, or by conditioned air from the aircraft environmental control system. The system is controlled by start and stop of fuel flow to the various tanks by means of a system controller. The controller uses sensors in the fuel tanks to command flow only when required to reduce the flammability exposure of the fuel tanks.
Owner:AERO SYST CONSULTANTS

On-board aircraft electrochemical system

An onboard electrochemical system of an electrochemical cell including a cathode and an anode separated by an electrolyte separator is selectively operated in either of two modes. In a first mode of operation, water or air is directed to the anode, electric power is provided to the anode and cathode to provide a voltage difference between the anode and the cathode, and nitrogen-enriched air is directed from the cathode to an aircraft fuel tank or aircraft fire suppression system. In a second mode of operation, fuel is directed to the anode, electric power is directed from the anode and cathode to one or more aircraft electric power-consuming systems or components, and nitrogen-enriched air is directed from the cathode to a fuel tank or fire suppression system.
Owner:HAMILTON SUNDSTRAND CORP

Apparatus and method for controlling an aircraft cooling and smoke system using discrete components

A combined smoke detector and cooling control system for a mobile platform is operable to control multiple electronic units. A smoke detector is connected to the electronic unit and operates to identify a smoke event. A cooling system is connected to the electronic unit. A fan in the cooling system includes a switch which indicates if a cooling system fault occurs. A plurality of relays connect to the electronic unit, the smoke detector and the cooling system. If a cooling system fault occurs, a first relay immediately de-energizes the cooling system. After a fixed period of smoke persistence during a smoke event, a second relay de-energizes the cooling system.
Owner:THE BOEING CO

Firewall, pylon of aircraft, and aircraft

In order to provide a firewall that is capable of preventing flame passage through a through-hole without any sealant in a connecting part of a component in which a fastener through-hole is formed, a firewall 50 is provided which can prevent a flame from leaking out of the connecting part which connects a first member 51 to a second member 55, particularly through the fastener through-hole TH defined therein. In the firewall 50, the connecting part is a part of a fire-protection chamber 52. As sealing pieces 51d and 51e which also constitute a part of the fire-protection chamber 52 are in contact with each other, the flame is unable to enter into a closed space CA. Thus, the flame would not reach the connecting part, thereby preventing the flame from leaking out of the firewall 50 to the outside of a nacelle 23.
Owner:MITSUBISHI AIRCRAFT

Aircraft propulsion system having at least one anti-fire tank

A propulsion system comprising a nacelle substantially tubular around a longitudinal axis, having an inner wall extending from a front to a rear of the nacelle and by an outer wall, external of the inner wall, extending from the front to the rear of the nacelle, a turbojet comprising a fan and situated internally of the inner wall of the nacelle, at least one tank containing an extinguishing fluid, and a network of pipes hydraulically connected to the tank. The propulsion system comprises each tank being located in the nacelle, around the inner wall and internally of the outer wall. Such a propulsion system makes it possible to shift the one or more tanks, which no longer occupy the space at the mast, and makes it possible to carry a large volume of extinguishing fluid so as to be able to accommodate future regulations.
Owner:AIRBUS OPERATIONS (SAS)

Battery failure venting system

The present invention extends to methods, systems, devices, apparatus, and computer program products for protecting against runaway thermal failure of a battery pack. A fireproof container is built with a thermo-sensitive panel cover leading to the outside environment. When battery failure causes temperatures to rise inside one of the compartments, the panel cover material reacts, causing it open, allowing flames and hot gasses to vent and preventing the buildup of heat internally. Internal sensors may detect the activation of the cover material and allow an electric or electronic circuit to isolate the contents of the failed container from the rest of the system.
Owner:EL-SIGHT LTD

On-board vehicle inert gas generation system

An onboard inert gas system has an electrochemical and a membrane gas separator. The electrochemical separator includes an electrochemical cell including a cathode and anode separated by an electrolyte separator. An electrical power source provides power to the electrical circuit at a voltage that electrolyzes water at the anode and forms water at the cathode, or reduces oxygen at the cathode and forms oxygen at the anode. Oxygen is consumed at the cathode, providing nitrogen-enriched air. Nitrogen-enriched air from the cathode is connected by a flow path to the membrane gas separator, which comprises a membrane having a greater permeability to oxygen or water than to nitrogen. Nitrogen-enriched air from the membrane gas separator that is further enriched in nitrogen, reduced in water content, or both, is connected by a flow path to a fuel tank, a fire suppression system, or both a fuel tank and a fire suppression system.
Owner:HAMILTON SUNDSTRAND CORP

Aircraft fire seal structure and aircraft

A fire seal structure prevents flame from coming out of a fire-prevention region of an aircraft. The fire seal structure includes: a first seal compressed and elastically deformed between two members of the aircraft; and a second seal pressed against the first seal in a direction intersecting a compression direction in which the first seal is compressed. A wall of the first seal pressed by the second seal includes a bent groove including at least one bent part.
Owner:MITSUBISHI AIRCRAFT

Multifunctional erosion protection strip

An airfoil article including a composite skin having a first surface and a second surface opposite first surface, forming a leading edge. The leading edge is during use subjected to an airflow meeting the leading edge at stagnation points. The leading edge includes an elongated member. The outer surface of the elongated member is arranged flush with the first surface of the composite skin such that an essentially smooth aerodynamic surface of the leading edge is formed. The elongated member is adapted to serve as an erosion protection of the leading edge and to function as an electrode of a plasma generating system.
Owner:SAAB AB

Aircraft fire seal structure and aircraft

A fire seal structure prevents flame from coming out of a fire-prevention region of an aircraft. The fire seal structure includes: a plurality of walls including: a first wall provided on a first partitioning member; and a second wall provided on a second partitioning member. One of the plurality of walls is a spring wall that functions as a spring. The first and the second partitioning members define the fire-prevention region. The plurality of walls forms a labyrinth-shaped gap between the first and the second partitioning members. Each of the plurality of walls contains a refractory material and includes a front end part. When the first and the second partitioning members are stationary with respect to each other, the front end part is not in contact with another member, and the spring wall is disposed closest to a facing member, among the plurality of walls.
Owner:MITSUBISHI AIRCRAFT

System and method of notification of an aircraft cargo fire within a container

Various embodiments of the present invention provide a system and method for notifying a flight crew of a fire condition in a cargo container of an aircraft. For instance, particular embodiments involve installing at least one notification device on a cargo container that is in communication with at least one of a fire-detection system or a fire-suppression system for the cargo container. In these particular embodiments, the notification device is configured to emit energy when the fire-detection system detects the fire condition in the cargo container or the fire-suppression system activates as a result of the fire condition. Further, particular embodiments of the invention involve installing at least one detector positioned to detect the energy emitted by the notification device. In these particular embodiments, the detector is configured to send a signal to notify the flight crew of the fire condition after detecting the energy emitted by the notification device.
Owner:UNITED PARCEL SERVICE OF AMERICAN INC

Empennage of a helicopter

An empennage (1.1) of a helicopter comprising a ducted counter-torque device with a multi-blade rotor (4) of rotor blades (3) and optional vertical tail fins (1.2). Flow-straightening stators (5) of stationary vanes are disposed substantially in a star configuration parallel to the rotor plane downstream from the rotor (4). A shroud (2.1) of the ducted counter-torque device is sheathed with a composite structure of an outer erosion protecting surface layer (7.1, 8.1) made of a hard plastic or a plastic composite material, and at least one succeeding layer (7.2, 8.2) of an elastomeric damping material.
Owner:AIRBUS HELICOPTERS DEUT GMBH

Method and system to enable selective smoke detection sensitivity

ActiveUS20160104358A1Selective smoke detection sensitivityAircraft fire/erosion preventionFire alarm smoke/gas actuationSmoke detectorsAirplane
There is provided a method to enable selective smoke detection sensitivity onboard an aircraft. The method has the step of installing one or more sensitivity selectable smoke detector assemblies. The method further has the step of electrically or wirelessly coupling the one or more sensitivity selectable smoke detector assemblies installed onboard the aircraft to one or more sensitivity selector controls installed onboard the aircraft. The method further has the step of selecting an alarm setpoint sensitivity level from two or more alarm setpoint sensitivity levels for each of the one or more sensitivity selectable smoke detector assemblies, based on sensitivity level determination factors of one or more of a mission type of the aircraft, a cargo type on the aircraft, a compartment zone specific area type on the aircraft, and an occupancy state on the aircraft.
Owner:THE BOEING CO

Thermally actuated passive gas turbine engine compartment venting

A thermally actuated venting system includes a thermally actuated vent for opening a vent outlet in a gas turbine engine associated compartment with a passive thermal actuator located in the compartment based on a temperature of the compartment. Outlet may be located at or near a top of a core engine compartment, a fan compartment, or a pylon compartment. Actuator may be operably connected to a hinged door of vent for opening outlet. Actuator may be actuated by a phase change material disposed in a chamber and having a liquid state below a predetermined actuation temperature and a gaseous state above the predetermined actuation temperature. Actuator may include a thermal fuse for closing door during a fire. Thermal fuse may include at least a portion of piston rod or a cylinder wall of actuator being made of a fuse material having a melting point substantially above the predetermined actuation temperature.
Owner:GENERAL ELECTRIC CO

Fire early warning device for aircraft engine

The invention provides a fire early warning device for an aircraft engine. A redundancy voltage comparing and detecting technology, an outputting closed loop detecting technology and a crosslinking communication monitoring technology are used for detecting fire of the aircraft engine. The fire early warning device for the aircraft engine comprises an electrical bridge circuit, a logic control unit, a signal outputting circuit, a crosslinking outputting line and a crosslinking inputting line, wherein the electrical bridge circuit is provided with a thermal inductance resistance sensor; variations of resistance values of the thermal inductance resistance sensor are compared and judged by the logic control unit; fire warning and line faults can be detected in time; an outputting port is subjected to read-in comparison when equipment is electrified and runs; the outputting state is detected in real time so as to find out faults of a detecting box in time; and a crosslinking monitoring circuit monitors states of adjacent fire early warning devices in real time and transmits a device fault signal when the adjacent fire early warning devices fail.
Owner:成都飞亚航空设备应用研究所有限公司

Pressurized inerting system

A system for providing inerting gas to a protected space is disclosed. The system includes an electrochemical cell that produces inerting gas on a cathode fluid flow path, and delivers it to an inerting gas flow path is disposed in operative fluid communication with the cathode fluid flow path outlet and the protected space. The inerting gas flow path includes a condenser that receives inerting gas from the cathode fluid flow path outlet, and also includes a pressure control device configured along with the pressurized gas source to provide a pressure at the condenser greater than ambient pressure.
Owner:HAMILTON SUNDSTRAND CORP

Three dimensional auxetic structure, manufacturing method and tooling

ActiveUS20180312239A1High impact energy absorptionPropellersSolesEngineeringCell wall
A three-dimensional auxetic structure, comprising a plurality of adjoining hollow cells, each hollow cell having cell walls and a transversal cross section of the plurality hollow cells following a two-dimensional auxetic pattern, each cell wall comprising folding lines parallel to a plane containing the auxetic pattern such that peaks and valleys are defined in the cell walls and the cell walls being foldable along the folding lines.
Owner:AIRBUS OPERATIONS SL

Aircraft and particulate detection method

An aircraft including a jet engine including a core having a compressor and combustion chamber, and a particulate sensor located within the core and a particulate detection method for an aircraft having a jet engine where the method includes sensing particulates within the core and providing a corresponding value for the sensed particulates and providing an indication related thereto.
Owner:GE AVIATION SYST LLC

Fire-and electromagnetic interference (EMI)-resistant aircraft components and methods for manufacturing the same

Fire- and electromagnetic interference (EMI)-resistant aircraft components and methods for manufacturing the same are provided. A thermally and electrically conductive coating material layer is formed on at least a portion of an intermediate article comprised of a non-metallic material. The thermally and electrically conductive coating material layer is comprised of a metal. A fire-retardant material layer is cold sprayed on the thermally and electrically conductive coating material layer. At least one continuous electrically conductive element may be integrated with the non-metallic material of the intermediate article.
Owner:HONEYWELL INT INC

Compound engine assembly with mount cage

A compound engine assembly with an engine core including at least one internal combustion engine, a turbine section, and a compressor having an outlet in fluid communication with an inlet of the engine core. A casing is connected to the turbine section, compressor and engine core. A mount cage is connected to mounts attached to the casing between the compressor and a hot zone including the turbine section and exhaust pipe(s). The struts are separated from the hot zone by at least one firewall. The mount cage may include a plurality of struts all extending from the mounts away from the turbine section and engine core. The casing may be a gearbox module casing through which the turbine shaft in engaged with the engine shaft. The mount cage may be completely contained within an axial space with the turbine section and exhaust pipe(s) being located outside of the axial space.
Owner:PRATT & WHITNEY CANADA CORP

Apparatus and method for controlling an aircraft cooling and smoke system using discrete components

A combined smoke detector and cooling control system for a mobile platform is operable to control multiple electronic units. A smoke detector is connected to the electronic unit and operates to identify a smoke event. A cooling system is connected to the electronic unit. A fan in the cooling system includes a switch which indicates if a cooling system fault occurs. A plurality of relays connect to the electronic unit, the smoke detector and the cooling system. If a cooling system fault occurs, a first relay immediately de-energizes the cooling system. After a fixed period of smoke persistence during a smoke event, a second relay de-energizes the cooling system.
Owner:THE BOEING CO

Transport Element Clamp System

A transport element clamp system comprising a lower portion, an upper portion, and a channel system. The lower portion has a first number of cutouts and the upper portion has a second number of cutouts. The lower portion is configured to bridge a gap between two support structures in an aircraft. The upper portion is configured to interlock with the lower portion. The channel system is formed by the first number of cutouts and the second number of cutouts. The channel system is configured to receive a number of transport elements when the upper portion and the lower portion are coupled to each other. The transport element clamp system electrically isolates the number of transport elements from the two support structures.
Owner:THE BOEING CO

Aircraft fire seal structure and aircraft

A fire seal structure prevents flame from coming out of a fire-prevention region of an aircraft including a panel and a duct. The fire seal structure includes: a first member provided on the duct at a connection portion between the panel and the duct; and a second member that faces the first member around the opening and is provided on the panel. The panel defines the fire-prevention region. The duct communicates with an opening provided in the panel. The duct defines, together with the panel, the fire-prevention region. The first and the second members each contain refractory material, and the first and the second members form a labyrinth-shaped gap between the duct and the panel.
Owner:MITSUBISHI AIRCRAFT

Method and system to enable selective smoke detection sensitivity

There is provided a method to enable selective smoke detection sensitivity onboard an aircraft. The method has the step of installing one or more sensitivity selectable smoke detector assemblies. The method further has the step of electrically or wirelessly coupling the one or more sensitivity selectable smoke detector assemblies installed onboard the aircraft to one or more sensitivity selector controls installed onboard the aircraft. The method further has the step of selecting an alarm setpoint sensitivity level from two or more alarm setpoint sensitivity levels for each of the one or more sensitivity selectable smoke detector assemblies, based on sensitivity level determination factors of one or more of a mission type of the aircraft, a cargo type on the aircraft, a compartment zone specific area type on the aircraft, and an occupancy state on the aircraft.
Owner:THE BOEING CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products