Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

39 results about "Nucleic acid analogue" patented technology

Nucleic acid analogues are compounds which are analogous (structurally similar) to naturally occurring RNA and DNA, used in medicine and in molecular biology research. Nucleic acids are chains of nucleotides, which are composed of three parts: a phosphate backbone, a pentose sugar, either ribose or deoxyribose, and one of four nucleobases. An analogue may have any of these altered. Typically the analogue nucleobases confer, among other things, different base pairing and base stacking properties. Examples include universal bases, which can pair with all four canonical bases, and phosphate-sugar backbone analogues such as PNA, which affect the properties of the chain (PNA can even form a triple helix). Nucleic acid analogues are also called Xeno Nucleic Acid and represent one of the main pillars of xenobiology, the design of new-to-nature forms of life based on alternative biochemistries.

Pseudonucleotide comprising an intercalator

The present invention relates to intercalator pseudonucleotides. Intercalator pseudonucleotides according to the invention are capable of being incorporated into the backbone of a nucleic acid or nucleic acid analogue and they comprise an intercalator comprising a flat conjugated system capable of co-stacking with nucleobases of DNA. The invention also relates to oligonucleotides or oligonucleotide analogues comprising at least one intercalator pseudo nucleotide. The invention furthermore relates to methods of synthesising intercalator pseudo nucleotides and methods of synthesising oligonucleotides or oligonucleotide analogues comprising at least one intercalator pseudonucleotide. In addtition, the invention describes methods of separating sequence specific DNA(s) from a mixture comprising nucleic acids, methods of detecting a sequence specific DNA (target DNA) in a mixture comprising nucleic acids and / or nucleic acid analogues and methods of detecting a sequence specific RNA in a mixture comprising nucleic acids and / or nucleic acid analogues. In particular said methods may involve the use of oligonucleotides comprising intercalator pseudo nucleotides. The invention furthermore relates to pairs of oligonucleotides or oligonucleotide analogues capable of hybridising to one another, wherein said pairs comprise at least one intercalator pseudonucleotide. Methods for inhibiting a DNAse and / or a RNAse and methods of modulating transcription of one or more specific genes are also described.
Owner:HUMAN GENETIC SIGNATURES PTY LTD

Pseudonucleotide comprising an intercalator

The present invention relates to intercalator pseudonucleotides. Intercalator pseudonucleotides according to the invention are capable of being incorporated into the backbone of a nucleic acid or nucleic acid analogue and they comprise an intercalator comprising a flat conjugated system capable of co-stacking with nucleobases of DNA. The invention also relates to oligonucleotides or oligonucleotide analogues comprising at least one intercalator pseudo nucleotide. The invention furthermore relates to methods of synthesising intercalator pseudo nucleotides and methods of synthesising oligonucleotides or oligonucleotide analogues comprising at least one intercalator pseudonucleotide. In addition, the invention describes methods of separating sequence specific DNA(s) from a mixture comprising nucleic acids, methods of detecting a sequence specific DNA (target DNA) in a mixture comprising nucleic acids and / or nucleic acid analogues and methods of detecting a sequence specific RNA in a mixture comprising nucleic acids and / or nucleic acid analogues. In particular said methods may involve the use of oligonucleotides comprising intercalator pseudo nucleotides. The invention furthermore relates to pairs of oligonucleotides or oligonucleotide analogues capable of hybridising to one another, wherein said pairs comprise at least one intercalator pseudonucleotide. Methods for inhibiting a DNAse and / or a RNAse and methods of modulating transcription of one or more specific genes are also described.
Owner:HUMAN GENETIC SIGNATURES PTY LTD

RNA Antagonist Compounds for the Modulation of FABP4/AP2

Oligonucleotides directed against the FABP4 gene are developed for modulating the expression of FABP4 protein. The compositions comprise oligonucleotides, particularly antisense oligonucleotides, targeted to nucleic acids encoding FABP4. Methods of using these compounds for modulation of FABP4 expression and for the treatment of diseases associated with over expression of FABP4 are provided. Examples of such diseases are the metabolic syndrome, diabetes, atherosclerosis, and inflammatory states such as arthritis. The oligomer may be composed of deoxyribonucleosides or a nucleic acid analogue such as for example locked nucleic acid (LNA) or a combination thereof.
Owner:SANTARIS PHARMA AS

RNA antagonist compounds for the inhibition of apo-b100 expression

Oligonucleotides directed against the Apo-B100 gene are provided for modulating the expression of Apo-B100. The compositions comprise oligonucleotides, particularly antisense oligonucleotides, targeted to nucleic acids encoding the Apo-B100. Methods of using these compounds for modulation of Apo-B100 expression and for the treatment of diseases associated with either overexpression of Apo-B100, expression of mutated Apo-B100 or both are provided. Examples of diseases are cancer such as lung, breast, colon, prostate, pancreas, lung, liver, thyroid, kidney, brain, testes, stomach, intestine, bowel, spinal cord, sinuses, bladder, urinary tract or ovaries cancers. The oligonucleotides may be composed of deoxyribonucleosides or a nucleic acid analogue such as for example locked nucleic acid or a combination thereof.
Owner:SANTARIS PHARMA AS

Morphatides: novel shape and structure libraries

This invention provides a method for identifying one or more complexes from a library of complexes, wherein said complex or complexes are selected for their ability to perform a preselected or desired function on a target molecule or by having a pre-selected structure, each complex being designated a morphatide, said method comprising: (a) preparing a library of morphatides, comprised of: (i) a scaffolding component selected from the group consisting of nucleic acid, nucleic acid like molecule or nucleic acid analog having one or more regions of randomized sequence; (ii) one or more linker components; and (iii) one or more agent molecules or type of agent molecules, linked to the scaffolding component by one or more type of linker components; and (b)screening the library of morphatides prepared in step (a) by contacting, binding, or associating the morphatides with one or more suitable target molecules upon which a morphatide performs a preselected or desired function or to which a morphatide binds or associates through a pre-selected structure of said morphatide under conditions permitting said morphatide to perform said preselected or desired function on said target molecules or permitting said morphatide to bind or associate with said target molecules through the preselected structure; (c) separating the morphatides performing the preselected or desired function or binding or associating through the preselected structure, from the library of morphatides and target molecules; thereby identifying one or more complexes from a library of complexes, wherein said complex or complexes are selected for their ability to perform a preselected or desired function on a target molecule or by having a pre-selected structure.
Owner:LIFE TECH CORP

Transiently bonding drag-tags for separation modalities

The invention relates transiently attaching drag-tags to molecules during electrophoresis. The invention includes running buffers having drag-tags that transiently attach to lipophilic moieties attached to the molecules. The lipophilic moieties can be covalently or ionically bonded to the molecules. One particular aspect of the invention is a nucleoside analog or a nucleic acid analog comprising a lipophilic moiety. The invention is also directed to methods of separating molecules that comprise a lipophilic moiety. The methods generally comprise transiently attaching a drag-tag to the lipophilic moiety during a separation modality. These methods can be used to separate the molecules by size or weight, to measure a hydrodynamic radius of a drag-tag, or to separate a plurality of drag-tag by their hydrodynamic radius.
Owner:CARNEGIE MELLON UNIV

Oligomeric compounds for the modulation ras expression

Oligonucleotides directed against the Ha-ras gene are provided for modulating the expression of Ha-ras. The compositions comprise oligonucleotides, particularly antisense oligonucleotides, targeted to nucleic acids encoding the Ha-ras. Methods of using these compounds for modulation of Ha-ras expression and for the treatment of diseases associated with either overexpression of Ha-ras, expression of mutated Ha-ras or both are provided. Examples of diseases are cancer such as lung, breast, colon, prostate, pancreas, lung, liver, thyroid, kidney, brain, testes, stomach, intestine, bowel, spinal cord, sinuses, bladder, urinary tract or ovaries cancers. The oligonucleotides may be composed of deoxyribonucleosides or a nucleic acid analogue such as for example locked nucleic acid or a combination thereof.
Owner:SANTARIS PHARMA AS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products