Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

160 results about "Field replaceable unit" patented technology

A field-replaceable unit (FRU) is a printed circuit board, part, or assembly that can be quickly and easily removed from a computer or other piece of electronic equipment, and replaced by the user or a technician without having to send the entire product or system to a repair facility. FRUs allow a technician lacking in-depth product knowledge to isolate faults and replace faulty components. The granularity of FRUs in a system impacts total cost of ownership and support, including the costs of stocking spare parts, where spares are deployed to meet repair time goals, how diagnostic tools are designed and implemented, levels of training for field personnel, whether end-users can do their own FRU replacement, etc.

Thermal management using stored field replaceable unit thermal information

A method of managing conditions in a data center comprises storing information relating to field replaceable unit thermal properties in at least one field replaceable unit non-volatile memory and generating information for real-time dynamic temperature mapping of the data center based on the field replaceable unit thermal property information.
Owner:HEWLETT PACKARD DEV CO LP

Detachable displays or portable devices

A detachable display unit for portable devices is field replaceable and can be interchanged rapidly for service, upgrade or more flexible use. The display is a simple field replaceable unit that can be replaced in a matter of a few seconds in a routine way, allowing more cost effective service both for the repair organization and the consumer. This is made possible by a set of electrical interfaces and connectors for portable devices such that high cost and fragile displays can be quickly changed in the field by the consumer. The specific sets of interfaces and connectors for different classes of portable devices utilize as much as possible common electrical and physical components, thereby standardizing the electrical interfaces and connectors.
Owner:AU OPTRONICS CORP

Network storage appliance with integrated redundant servers and storage controllers

A network storage appliance is disclosed. The appliance includes a single chassis that encloses a plurality of servers and a plurality of storage controllers coupled together via a chassis backplane. The storage controllers control the transfer of data between the plurality of servers and a plurality of storage devices coupled to the storage controllers. The servers and storage controllers include a plurality of field replaceable unit (FRUs) hot-pluggable into the backplane such that any one of the FRUs may fail without loss of availability to the storage devices' data. In various embodiments, the chassis fits in a 19″ wide rack; is 1U high; the servers are standard PCs configured to execute off-the-shelf server applications and to facilitate porting of popular operating systems with little modification; the servers include disk-on-chip memory rather than a hard drive; local buses (e.g., PCIX) on the backplane interface the various FRUs.
Owner:DOT HILL SYST

Thermal management using stored field replaceable unit thermal information

A method of managing conditions in a data center comprises storing information relating to field replaceable unit thermal properties in at least one field replaceable unit non-volatile memory and generating information for real-time dynamic temperature mapping of the data center based on the field replaceable unit thermal property information.
Owner:HEWLETT PACKARD DEV CO LP

Complex system serviceability design evaluation method and apparatus

A technique is provided for designing and evaluating service models for components, functions, subsystems and field replaceable units in a complex machine system. At a component or item level, each model identifies various items, failure modes, and so forth which may be the root cause of anticipated serviceable events or faults. The design tools permit numerous interfaces to be used in the design of service models, and in the evaluation of the degree to which the models address detectability and isolation capabilities for the root causes of serviceable events and faults.
Owner:GE MEDICAL SYSTEMS INC

Data redundancy in a hot pluggable, large symmetric multi-processor system

A computer system includes a plurality of field replaceable units, each having volatile memory and at least one CPU. The FRUs communicate with each other via centralized logic. A RAID data fault tolerance technique is applied to the system so that an FRU can be lost or removed without loss of its data. An exclusive OR engine is included in the centralized logic or distributed among the FRUs. The RAID logic can restripe itself upon removal or addition of a FRU.
Owner:CONVERSANT INTPROP MANAGEMENT INC

Method and apparatus for identifying a faulty component on a multiple component field replaceable unit

The present invention is directed to a data storage system utilizing a number of data storage devices. The data storage system features one or more storage device sleds, which may each carry multiple storage devices. Each storage device sled and its interconnected storage devices may comprise a field replaceable unit. In response to the detection of a failure associated with a field replaceable unit, information related to that failure may be stored in memory or storage associated with the field replaceable unit. Repair personnel may access the stored information in order to positively identify the failed component of the field replaceable unit in connection with the repair or replacement of that component, in order to return the field replaceable unit to service.
Owner:DOT HILL SYST

Method and apparatus for locating a faulty device in a computer system

A computer system compnses a processor (2), memory (4) and a plurality of devices (6, 8, 12), the processor (2) and the memory (4) being operable to effect the operation of a fault response processor (AFR), and a device driver (GRAPHICS, NETWORK, H2IO, IO2L, SERIAL) for each of the devices. The fault response processor (AFR) is operable to generate a model which represents the processor (2), the memory (4) and the devices (6, 8, 12) of the computer system and the inter-connection of the processor (2), memory (4) and the devices (GRAPHICS, NETWORK, H2IO, IO2L, SERIAL). The device driver (GRAPHICS, NETWORK, H2IO, IO2L, SERIAL) for each of the devices (6, 8, 12) is arranged, consequent upon a change of operational status of the device, to generate fault report data indicating whether the change of status was caused internally within the device or externally by another connected device. The devices of the computer system may be formed as a plurality of Field Replaceable Units (FRU). The fault response processor (AFR) is operable, consequent upon receipt of the fault reports from the device drivers (GRAPHICS, NETWORK, H2IO, IO2L, SERIAL) to estimate the location of a FRU containing a faulty device by applying the fault indication to the model. In other embodiments the fault report data includes direction information indicating a connection between the device and the other connected device which caused the external fault. Having identified the faulty device the FRU may be replaced, thereby minimizing down time of the computer system.
Owner:ORACLE INT CORP

Method and system for storing field replaceable unit operational history information

A method for tracking repair histories includes providing a field replaceable unit having a memory device. Operational history data is collected during the operation of the field replaceable unit. The operational history data is stored in the memory device. A computing system includes a field replaceable unit including a memory device configured to store operational history data associated with the field replaceable unit.
Owner:ORACLE INT CORP

Fan field replaceable unit

A fan device includes a connector, a fan, and an attachment assembly. The fan is configured to provide cooling to circuitry when the fan receives a power signal through the connector. The attachment assembly is configured to control attachment of the fan device to a chassis within an air duct defined by the chassis. The fan defines (i) a near side which faces the circuitry, (ii) a far side which faces away from the circuitry, (iii) an airflow axis which extends from the near side to the far side along an airflow direction, and (iv) a fan profile which is substantially perpendicular to the airflow axis. The fan is disposed substantially between the electronic circuitry and the attachment assembly when the fan device attaches to the chassis within the air duct. The attachment assembly has a width which closely mirrors that of the fan profile.
Owner:CISCO TECH INC

Apparatus and method for adopting an orphan I/O port in a redundant storage controller

A storage controller configured to adopt orphaned I / O ports is disclosed. The controller includes multiple field-replaceable units (FRUs) that plug into a backplane having local buses. At least two of the FRUs have microprocessors and memory for processing I / O requests received from host computers for accessing storage devices controlled by the controller. Other of the FRUs include I / O ports for receiving the requests from the hosts and bus bridges for bridging the I / O ports to the backplane local buses in such a manner that if one of the processing FRUs fails, the surviving processing FRU detects the failure and responsively adopts the I / O ports previously serviced by the failed FRU to service the subsequently received I / O requests on the adopted I / O ports. The I / O port FRUs also include I / O ports for transferring data with the storage devices that are also adopted by the surviving processing FRU.
Owner:DOT HILL SYST

Computer system

A computer system comprises a processor (2), memory (4) and a plurality of devices (6, 8, 10, 12), the processor (2) and the memory (4) being operable to effect the operation of a fault response processor (AFR), and a device driver (GRAPHICS, NETWORK, H2IO, IO2L, SERIAL) for each of the devices. The fault response processor (AFR) is operable to generate a model (81) which represents the processor (2), the memory (4) and the devices (6, 8, 10, 12) of the computer system and the inter-connection of the processor (2), memory (4) and the devices (GRAPHICS, NETWORK, H2IO, IO2L, SERIAL). The device driver (GRAPHICS, NETWORK, H2IO, IO2L, SERIAL) for each of the devices (6, 8, 10, 12) is arranged, consequent upon a change of operational status of the device, to generate fault report data indicating whether the change of status was caused internally within the device or externally by another connected device. The devices of the computer system may be formed as a plurality of Field Replaceable Units (FRU). The fault response processor (AFR) is operable, consequent upon receipt of the fault reports from the device drivers (GRAPHICS, NETWORK, H2IO, IO2L, SERIAL) to estimate the location of a FRU containing a faulty device by applying the fault indication to the model (81). In other embodiments the fault report data includes direction information indicating a connection between the device and the other connected device which caused the external fault. Having identified the faulty device the FRU may be replaced, thereby minimizing down time of the computer system.
Owner:ORACLE INT CORP

Computer module housing

A rack mountable shelf supports a plurality of field replaceable units (FRUs) in the form of server cartridges, or blades. The blades are provided with an enclosure that includes a metal portion and a plastics portion. The provision of a blade enclosure for the blade can protect the components of the blade from physical damage and can also isolate them from electrical, static and other effects that could be potentially damaging to the blade components. The use of metal can provide strength and electromagnetic interference shielding with a very thin layer. The use of plastics can provide lightness, flexibilty in design, and the avoidance of metal to metal contact to facilitate insertion and removal of the blades.
Owner:ORACLE INT CORP

Method and system for monitoring errors on field replaceable units

A method and system of monitoring errors occurring on field replaceable units is described. At predetermined intervals, storage processors connected to a host system are identified and for each connected storage processor previous information about the storage processor and its corresponding error log is loaded. A path from the host system is connected to each unit and all units are inventoried through the connected storage processor. Each storage processor's pointer is then updated by retrieving all entries in each storage processor's corresponding error log, and new error log entries are detected and matched with its field replaceable unit so that an alert can be transmitted to a customer service center in the event an error is recorded on the error log.
Owner:EMC IP HLDG CO LLC

Spread Spectrum Clock Interoperability Control and Inspection Circuit

A spread spectrum clock generator (SSCG) control and inspection circuit provides a system and method for inspecting and controlling an external SSCG, and for verifying the modulation profile waveform of an external SSCG. An electronic circuit is included that can check for the presence of an optimal SSCG modulation profile in product subsystems, and in attached modular systems, including electronic plug-in features such as internal network adapters and cartridges. In one mode of the invention, an electronic circuit ensures continued radiated emissions compliance for field replaceable units or consumable parts within a product, such as a printer, a scanner, or a combination (or all-in-one) printer / scanner. In another mode of the invention, an electronic circuit may also act as a secondary security device for consumable products, such as toner cartridges or ink jet cartridges. In yet another mode of the invention, an electronic circuit may also adjust the attached SSCG clock.
Owner:LEXMARK INT INC

Computer system with dynamically configurable capacity

A computer system comprises a plurality of field replaceable units (FRUs) for supplying processing resources and a system controller. Each of the plurality of FRUs has a field replaceable unit identification (FRUID) memory adapted store a capacity-on-demand (COD) indication associated with the FRU, wherein the COD indication is indicative of whether the FRU is a base level resource or a COD resource. The system controller is configured to access the FRUID memory of each of the plurality of FRUs to detect the COD indication. Additionally, the system controller is configured to enable at least those of the plurality of FRUs for which the corresponding COD indication indicates that the FRU is a base level resource. The system controller is further configured to identify a need for additional processing resources, and is configured to enable additional ones of the plurality of FRUs responsive to identifying the need for additional processing resources.
Owner:ORACLE INT CORP

Method and system for configuring a computer system using field replaceable unit identification information

A method includes providing at least one field replaceable unit in a computer system. The field replaceable unit has a memory device configured to store field replaceable unit data. An authentication check is performed on the field replaceable unit data. The field replaceable unit is identified as being unqualified responsive to a failure of the authentication check. A computer system includes at least one field replaceable unit and a system controller. The field replaceable unit has a memory device configured to store field replaceable unit data. The system controller is configured to perform an authentication check on the field replaceable unit data, and identify the field replaceable unit as being unqualified responsive to a failure of the authentication check.
Owner:SUN MICROSYSTEMS INC

Field replaceable unit (FRU) identification system tool

A method includes interfacing with a field replaceable unit (FRU) having a memory device configured to store a FRUID image including at least status data. The status data is extracted from the memory device. Repair information associated with a repair of the field replaceable unit is received. The repair information is stored in the memory device. A system includes a field replaceable unit (FRU) and a FRU tool. The FRU includes a memory device configured to store a FRUID image including at least status data. The FRU tool is configured to interface with the FRU, extract the status data from the memory device, receive repair information associated with a repair of the field replaceable unit, and store the repair information in the memory device.
Owner:ORACLE INT CORP

Spread spectrum clock interoperability control and inspection circuit

A spread spectrum clock generator (SSCG) control and inspection circuit provides a system and method for inspecting and controlling an external SSCG, and for verifying the modulation profile waveform of an external SSCG. An electronic circuit is included that can check for the presence of an optimal SSCG modulation profile in product subsystems, and in attached modular systems, including electronic plug-in features such as internal network adapters and cartridges. In one mode of the invention, an electronic circuit ensures continued radiated emissions compliance for field replaceable units or consumable parts within a product, such as a printer, a scanner, or a combination (or all-in-one) printer / scanner. In another mode of the invention, an electronic circuit may also act as a secondary security device for consumable products, such as toner cartridges or ink jet cartridges. In yet another mode of the invention, an electronic circuit may also adjust the attached SSCG clock.
Owner:LEXMARK INT INC

Tidal/wave flow electrical power generation system

An integrated system for tidal / wave flow electrical power generation. This bi-directional system utilizes the wave flow on the shores and the flow of various rivers and estuaries to generate electrical power through a venturi box which has mounted in it and comprises of the following components: a vane assembly with variable pitch vanes made from high impact blade material; a drive shaft assembly that connects the vane drive unit with the generator; a flow detection vane that determines velocity and direction thereby providing input to the flow detection controller and variable pitch computer and controller; a solid state voltage regulator; a mechanical fly wheel assist for the drive assembly during transition between flow direction; a grid cycle input device to match the power being generated with the grid. This system is capable of being coupled together both physically and electrically. The generator unit assembly is a field replaceable unit to ease installation and maintenance. The venturi box design mitigates slit and sand build-up. The vane radial design limits the damage by flotsam and provides a means of reducing fish damage as well.
Owner:CORCORAN III JAMES JOHN

Method and apparatus for wirelessly testing field-replaceable units (FRUs)

One embodiment of the present invention provides a system that facilitates wirelessly identifying and testing field-replaceable units within a computer system. The system includes a field-replaceable unit (FRU) within the computer system and a storage device located on the FRU. Data on the storage device contains an identifier for the FRU. A wireless transceiver coupled to the storage device is configured to receive a request directed to the FRU and, in response to the request, to transmit the identifier for the FRU.
Owner:ORACLE INT CORP

Configuring system units using on-board class information

A method of automatic configuration of field replaceable units in a system includes steps of accessing configuration management system (CMS) class information from a field replaceable unit (FRU) and using the accessed information for deriving an initial configuration for the FRU. The FRU can contain information defining one or more configuration management system classes for the FRU. One or more management classes may be identified for managing one or more resources for the FRU. The CMS class information is then be used to derive the initial configuration information for the FRU for managing the device(s) of that FRU. The CMS class information can be held in non-volatile memory in the FRU. This information can be read on inserting the FRU into the system and can be used to establish the initial configuration prior to full integration of the FRU into the system.
Owner:ORACLE INT CORP

Field-replaceable unit revision compatibility

A method is disclosed for use in a computer system including a first revision compatibility descriptor identifying a first plurality of compatible combinations of field-programmable unit codes. The method includes steps of: (A) determining whether the first revision compatibility descriptor identifies first field-programmable unit code for use in a first field-programmable unit as being compatible with the computer system; and (B) if the first revision compatibility descriptor does not identify the first field-programmable unit code as being compatible with the computer system, performing a step of updating the first revision compatibility descriptor to identify the first field-programmable unit code as being compatible with the computer system.
Owner:HEWLETT-PACKARD ENTERPRISE DEV LP

Error management

A computer system includes a plurality of field replaceable units. A system controller monitors system errors. A diagnostic engine is responsive to the system controller detecting an error to identify a faulty field replaceable unit. A reconfiguration engine can then be operable to deconfigure the faulty field replaceable unit. By providing a diagnostic engine to identify a faulty field replaceable unit to be deconfigured, greater reliability with regard to the identification of a faulty unit can be achieved.
Owner:ORACLE INT CORP

System and method for storage of operational parameters on components

A computer network may include one or more systems coupled to many components. The computer network may be a storage network that includes one or more systems connected to one or more storage systems. One or more components coupled to the computer network may be modular components such as field replaceable units (FRUs). A component may include a non-volatile memory that stores a value for an operational parameter of the component. The value for the operational parameter may specify an operating condition for the component. A monitor may be coupled to the component and may be configured to access the operational parameter value on the nonvolatile memory to determine if the component is operating outside of the specified operating condition.
Owner:ORACLE INT CORP

Method and system of obtaining physical slot number of single board, and type of slot

This method includes these steps: The single board (SB) reports state shift message of the field replaceable unit to the chassis management board (CMB); CMB obtains the hardware address of SB from the state shift message; CMB obtains the related physical slot number and slot type from the hardware address; CMB sends the slot number and slot type to SB. The system consists of CMB and SB. The invention utilizes the obtained SB hardware address to find the related physical slot number and slot type from the chassis FRU info storage to locate the physical position of SB. The method possesses compatibility. It can be used in any type chassis to obtain correct SB physical slot number and slot type.
Owner:HUAWEI TECH CO LTD

Field replaceable storage array

A single field replaceable storage or computer system may include a processor coupled to a peripheral bus by a bridge device. The field replaceable unit (FRU) may also include system memory coupled to the processor and a network interface coupled to the peripheral bus. One or more drive controllers may also be included coupled to the peripheral bus. Additionally, the single field replaceable unit includes an array of disk drives coupled to the one or more drive controllers. The array of disk drives may be configured as one or more RAID logical volumes and exported or presented to client machines as one or more file systems through the network interface. The processor, system memory, network interface, drive controllers, and array of disk drives are all packaged together as a single field replaceable unit. The processor, system memory, network interface, drive controllers, and array of disk drives may be configured not to be individually field serviceable or replaceable. If the unit fails and needs servicing or replacement, the unit may be replaced as a whole.
Owner:ORACLE INT CORP

Telecommunications switch/server

The switch has a passive section and an active section or tray that may be docked to the passive section. The passive section contains only the physical interfaces to the switch's external data and telephony networks and power input. It is not intended to be a field replaceable unit and is therefore intended to be mounted in a rack system with all of the power and communications cables attached thereto. The telephony and data ports are routed from the passive section to the active section via connectors on the two sections as well as to a redundancy connector on the passive section that may be physically connected by a cable to a slave unit in a redundant application. The active section or tray contains all of the active components of the switch and is inserted via guides into the passive section. The tray is considered a field replaceable unit and can be inserted into and extracted from the passive section while the system is powered up and operational. As a result of its unique two-section design, the present switch has several advantages. For example upon failure, all active components of the system may be replaced without removing the mounting hardware from the rack in which the switch is mounted and without removing any cables connected to the switch. Also when the switch is part of a redundant system, when the switch fails, all of the active components of the switch may be replaced without interrupting system operations.
Owner:DIALOGIC INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products