Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

518 results about "Entrance channel" patented technology

Plug device for endoscopic instrument channel

A plug device for use in an entrance passage which is provided on a manipulating head of an endoscope to guide a treating instrument like forceps into an instrument channel of the endoscope. The plug device includes a metallic outer shell, and a pressure relief member formed of a resilient material and fitted in the outer shell member, the pressure relief member having: a valve portion including a slit which is normally closed and openable on insertion of a treating instrument into the entrance passage; a pressure relief chamber; and throttle portions including apertures of different size located on the inner and outer sides of the pressure relief chamber within the entrance passage to the instrument channel of the endoscope. An auxiliary or secondary pressure relief chamber is formed between the valve member and the pressure relief member.
Owner:FUJI PHOTO OPTICAL CO LTD

Turbine BOAS with edge cooling

A cooling hole having an inlet passage forming an inward spiral flow path and an outlet passage forming an outward spiral flow path in which the two paths are counter flowing in order to improve the heat transfer coefficient. The spiral cooling hole is used in a blade outer air seal (BOAS) for a turbine in which the edges of the shroud segments include a counter flowing micro serpentine flow cooling circuit with thin diffusion discharge cooling slots for the BOAS edges. The total BOAS cooling air is impingement from the BOAS cooling air manifold and metered through the impingement cooling holes to produce impingement cooling onto the backside of the BOAS. The spent cooling air is then channels into the multiple micro serpentine cooling flow circuits located around the four edges of the shroud segments. This cooling air then flows in a serpentine path through the horizontal serpentine flow channels and then discharged through the thin diffusion cooling slots as peripheral purge air for the mate faces as well as the spacing around the BOAS or shroud segments. Trip strips are used in the serpentine flow channels for the augmentation of internal heat transfer cooling capability. The micro serpentine flow cooling air circuits spaced around the four edges of the shroud segments are formed into the shroud segments during the casting process of the shroud segments.
Owner:FLORIDA TURBINE TECH

Blade for a gas turbine

A blade is provided for a gas turbine. The blade comprises a main body comprising a cooling fluid entrance channel; a cooling fluid collector in communication with the cooling fluid entrance channel; a plurality of side channels extending through an outer wall of the main body and communicating with the cooling fluid collector and a cooling fluid cavity; a cooling fluid exit channel communicating with the cooling fluid cavity; and a plurality of exit bores extending from the cooling fluid exit channel through the main body outer wall.
Owner:SIEMENS ENERGY INC

Dual-fuel valve

A valve for flowing gaseous fuel, i.e., natural gas or propane gas, to an internal combustion engine includes a valve body having an inlet passage and first and second outlet paths in parallel with one another and in flow communication with the inlet passage. A plug-type adjustment member is threaded into the body and an annular seat in the body coacts with the adjustment member to form an orifice in the first outlet path. A stop mechanism limits movement of the adjustment member between a first position at which the orifice area is smaller and a second position at which the orifice area is larger. The valve permits adjustment of fuel flow to small engines so that such engines provide maximum power without exceeding applicable emission standards. And the valve is tamper-resistant.
Owner:GENERAC POWER SYSTEMS

Method of manufacturing a handle for a beverage dispensing head

In a method of manufacturing a beverage dispensing head, a first section is molded to include an exit channel and a first portion of a valve bore. A second section is molded to include an entry channel, a passage through the second section, and a second portion of the valve bore. A third section is molded to include a passage through the third section and a third portion of the valve bore. The first section is mated with the second section and the second section is mated with the third section to form a handle including a passageway therethrough. The mating of the first section with the second section and the second section with the third section aligns the first portion with the second portion and the second portion with the third portion to form the valve bore for the passageway. In addition, the entry channel is sealed to form a fluid entry aperture and a fluid entry conduit for the passageway. Further, the exit channel is sealed to form a portion of a fluid exit conduit for the passageway. Still further, the exit channel aligns with the passages to form a portion of the fluid exit conduit and to provide a fluid exit aperture for the passageway. After forming the handle, a valve assembly is placed within the valve bore, and a valve actuator assembly is mounted onto the handle. A nozzle is secured to the handle such that the fluid exit aperture communicates with the nozzle.
Owner:TAPRITE FASSCO MFG INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products