Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

124 results about "Cancer biomarkers" patented technology

A cancer biomarker refers to a substance or process that is indicative of the presence of cancer in the body. A biomarker may be a molecule secreted by a tumor or a specific response of the body to the presence of cancer. Genetic, epigenetic, proteomic, glycomic, and imaging biomarkers can be used for cancer diagnosis, prognosis, and epidemiology. Ideally, such biomarkers can be assayed in non-invasively collected biofluids like blood or serum.

Device for capture, enumeration, and profiling of circulating tumor cells

Applications in nanomedicine, such as diagnostics and targeted therapeutics, rely on the detection and targeting of membrane biomarkers. The present invention, in one embodiment, utilizes quantitative profiling, spatial mapping, and multiplexing of cancer biomarkers using functionalized quantum dots. This approach provides highly selective targeting molecular markers for pancreatic cancer with extremely low levels of non-specific binding and provides quantitative spatial information of biomarker distribution on a single cell, which is important since tumors cell populations are inherently heterogeneous. The quantitative measurements (number of molecules per square micron) is validated using flow cytometry and demonstrated using multiplexed quantitative profiling using color-coded quantum dots.
Owner:THE JOHN HOPKINS UNIV SCHOOL OF MEDICINE

Cancer Biomarkers and Methods of Use

A method of evaluating a probability a subject has a cancer, diagnosing a cancer and/or monitoring cancer progression comprising: a. measuring an amount of a biomarker selected from the group consisting of CUZD1 and/or LAMC2 and/or the group CUZD1, LAMC2, AQP8, CELA2B, CELA3B, CTRB1, CTRB2, GCG, IAPP, INS, KLK1, PNLIPRP1, PNLIPRP2, PPY, PRSS3, REG3G, SLC30A8, KLK3, NPY, PSCA, RLN1, SLC45A3, DSP, GP73, DSG2, CEACAM7, CLCA1, GPA33, LEFTY1, ZG16, IRX5, LAMP3, MFAP4, SCGB1A1, SFTPC, TMEM100, NPY, PSCA, RLN1 and/or SLC45A3 in a test sample from a subject with cancer; wherein the cancer is pancreas cancer if CUZD1, LAMC2, AQP8, CELA2B, CELA3B, CTRB1, CTRB2, GCG, LAPP, INS, KLK1, PNLIPRP1, PNLIPRP2, PPY, PRSS3, REG3G, SLC30A8, DSP, GP73 and/or DSG2 is selected; the cancer is colon cancer if CEACAM7, CLCA1, GPA33, LEFTY1 and/or ZG16 is selected, the cancer is lung cancer if IRX5, LAMP3, MFAP4, SCGB1A1, SFTPC and/or TMEM100 is selected; or the cancer is prostate cancer if NPY, PSCA, RLN1 and/or SLC45A3 is selected; b. comparing the measured amount to a control and detecting an increase in the amount of the biomarker compared to control; and c. identifying the subject as having or having an increased probability of having the cancer when an increase in the biomarker compared to control is detected.
Owner:UNIV HEALTH NETWORK

Preparing method and application of mimic enzyme with double catalysis functions based on hemin mediation gold mineralization path

The invention provides a preparing method and application of mimic enzyme with double catalysis functions based on a hemin mediation gold mineralization path. The one-pot type in-situ synthesis method is adopted, the hemin and chloroauric acid are mixed under the alkaline condition, then gold in-situ biological mineralization is achieved with the hemin as a reducing agent and a stabilizing agent, and a Hemin-AuNCs compound with Hemin peroxidase catalysis and gold catalysis activity is prepared. The function of a nano wire of the Hemin-AuNCs compound is brought into play, the electronic transmission capability of the Hemin catalysis reaction is promoted, meanwhile, the adsorption capability for a substrate is enhanced, and the catalysis activity of the Hemin-AuNCs compound is obviously higher than that of common Hemin by four or more times. Complex photoelectric instrument usage is not involved in the preparing method, and the beneficial effects that the catalysis activity is high, operation is simple, response is fast and cost is low are achieved. The cancer biomarker alpha fetoprotein immunoassay serves as the example, the Hemin-AuNCs compound is applied to marking of an AFP antibody, then, the enzyme linked immunosorbent assay is adopted, and high-sensitivity detection on the cancer biomarker alpha fetoprotein in blood is achieved through the enzymatic catalysis and gold catalysis silver deposition signal amplification path.
Owner:QUFU NORMAL UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products