Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

195 results about "Ascending aorta" patented technology

The ascending aorta (AAo) is a portion of the aorta commencing at the upper part of the base of the left ventricle, on a level with the lower border of the third costal cartilage behind the left half of the sternum.

Percutaneously delivered temporary valve assembly

The percutaneously delivered temporary valve assembly of the present invention, and method of using the same, provides an elongate element and a temporary valve disposed on the elongate element. The temporary valve can comprise struts and a membrane attached to the struts. The elongate element can include at least one lumen. The percutaneously delivered temporary valve assembly can be used to replace an aortic valve by locating a temporary valve in a patient's ascending aorta; deploying the temporary valve; removing the native aortic valve past the temporary valve; implanting the prosthetic aortic valve past the temporary valve; collapsing the temporary valve; and removing the temporary valve from the patient. The temporary valve can be sized to the patient and can be left in place while the prosthetic aortic valve heals in.
Owner:MEDTRONIC VASCULAR INC

Apparatus and methods of bioelectrical impedance analysis of blood flow

InactiveUS6095987AAccurately and non-invasively and continuously measuring cardiac outputCatheterSensorsBioelectrical impedance analysisCardiac pacemaker electrode
Apparatus and methods are provided for monitoring cardiac output using bioelectrical impedance techniques in which first and second electrodes are placed in the trachea and / or bronchus in the vicinity of the ascending aorta, while an excitation current is injected into the thorax via first and second current electrodes, so that bioelectrical impedance measurements based on the voltage drop sensed by the first and second electrodes reflect voltage changes induced primarily by blood flow dynamics, rather than respiratory or non-cardiac related physiological effects. Additional sense electrodes may be provided, either internally, or externally, for which bioelectrical impedance values may be obtained. Methods are provided for computing cardiac output from bioelectrical impedance values. Apparatus and methods are also provided so that the measured cardiac output may be used to control administration of intravenous fluids to an organism or to optimize a heart rate controlled by a pacemaker.
Owner:ECOM MED

System for cardiac procedures

A system for accessing a patient's cardiac anatomy which includes an endovascular aortic partitioning device that separates the coronary arteries and the heart from the rest of the patient's arterial system. The endovascular device for partitioning a patient's ascending aorta comprises a flexible shaft having a distal end, a proximal end, and a first inner lumen therebetween with an opening at the distal end. The shaft may have a preshaped distal portion with a curvature generally corresponding to the curvature of the patient's aortic arch. An expandable means, e.g. a balloon, is disposed near the distal end of the shaft proximal to the opening in the first inner lumen for occluding the ascending aorta so as to block substantially all blood flow therethrough for a plurality of cardiac cycles, while the patient is supported by cardiopulmonary bypass. The endovascular aortic partitioning device may be coupled to an arterial bypass cannula for delivering oxygenated blood to the patient's arterial system. The heart muscle or myocardium is paralyzed by the retrograde delivery of a cardioplegic fluid to the myocardium through patient's coronary sinus and coronary veins, or by antegrade delivery of cardioplegic fluid through a lumen in the endovascular aortic partitioning device to infuse cardioplegic fluid into the coronary arteries. The pulmonary trunk may be vented by withdrawing liquid from the trunk through an inner lumen of an elongated catheter. The cardiac accessing system is particularly suitable for removing the aortic valve and replacing the removed valve with a prosthetic valve.
Owner:EDWARDS LIFESCIENCES LLC

Endovascular system for arresting the heart

Devices and methods are provided for temporarily inducing cardioplegic arrest in the heart of a patient and for establishing cardiopulmonary bypass in order to facilitate surgical procedures on the heart and its related blood vessels. Specifically, a catheter based system is provided for isolating the heart and coronary blood vessels of a patient from the remainder of the arterial system and for infusing a cardioplegic agent into the patient's coronary arteries to induce cardioplegic arrest in the heart. The system includes an endoaortic partitioning catheter having an expandable balloon at its distal end which is expanded within the ascending aorta to occlude the aortic lumen between the coronary ostia and the brachiocephalic artery. Means for centering the catheter tip within the ascending aorta include specially curved shaft configurations, eccentric or shaped occlusion balloons and a steerable catheter tip, which may be used separately or in combination. The shaft of the catheter may have a coaxial or multilumen construction. The catheter may further include piezoelectric pressure transducers at the distal tip of the catheter and within the occlusion balloon. Means to facilitate nonfluoroscopic placement of the catheter include fiberoptic transillumination of the aorta and a secondary balloon at the distal tip of the catheter for atraumatically contacting the aortic valve. The system further includes a dual purpose arterial bypass cannula and introducer sheath for introducing the catheter into a peripheral artery of the patient.
Owner:EDWARDS LIFESCIENCES LLC

Methods and apparatus for coupling an allograft tissue valve and graft

Improvements to prosthetic heart valves and grafts for human implantation, particularly to methods and apparatus for coupling a prosthetic heart valve with an artificial graft during a surgical procedure to replace a defective heart valve and blood vessel section, e.g., the aortic valve and a section of the ascending aorta, are disclosed. An annular exterior surface of the prosthetic heart valve is fitted within a vascular graft lumen to dispose the vascular graft proximal end overlying the annular exterior surface, and the proximal end of an elongated vascular graft is compressed against the valve annular exterior surface in a manner that inhibits blood leakage between the vascular graft and the prosthetic heart valve.
Owner:MEDTRONIC INC

System and methods for performing endovascular procedures

A system for inducing cardioplegic arrest and performing an endovascular procedure within the heart or blood vessels of a patient. An endoaortic partitioning catheter has an inflatable balloon which occludes the ascending aorta when inflated. Cardioplegic fluid may be infused through a lumen of the endoaortic partitioning catheter to stop the heart while the patient's circulatory system is supported on cardiopulmonary bypass. One or more endovascular devices are introduced through an internal lumen of the endoaortic partitioning catheter to perform a diagnostic or therapeutic endovascular procedure within the heart or blood vessels of the patient. Surgical procedures such as coronary artery bypass surgery or heart valve replacement may be performed in conjunction with the endovascular procedure while the heart is stopped. Embodiments of the system are described for performing: fiberoptic angioscopy of structures within the heart and its blood vessels, valvuloplasty for correction of valvular stenosis in the aortic or mitral valve of the heart, angioplasty for therapeutic dilatation of coronary artery stenoses, coronary stenting for dilatation and stenting of coronary artery stenoses, atherectomy or endarterectomy for removal of atheromatous material from within coronary artery stenoses, intravascular ultrasonic imaging for observation of structures and diagnosis of disease conditions within the heart and its associated blood vessels, fiberoptic laser angioplasty for removal of atheromatous material from within coronary artery stenoses, transmyocardial revascularization using a side-firing fiberoptic laser catheter from within the chambers of the heart, and electrophysiological mapping and ablation for diagnosing and treating electrophysiological conditions of the heart.
Owner:EDWARDS LIFESCIENCES LLC

Methods and systems for performing thoracoscopic coronary bypass and other procedures

A method for closed-chest cardiac surgical intervention relies on viewing the cardiac region through a thoracoscope or other viewing scope and endovascularly partitioning the patient's arterial system at a location within the ascending aorta. The cardiopulmonary bypass and cardioplegia can be induced, and a variety of surgical procedures performed on the stopped heart using percutaneously introduced tools. The method of the present invention will be particularly suitable for forming coronary artery bypass grafts, where an arterial blood source is created using least invasive surgical techniques, and the arterial source is connected to a target location within a coronary artery while the patient is under cardiopulmonary bypass and cardioplegia.
Owner:EDWARDS LIFESCIENCES LLC

Endovascular device for entrapment of particulate matter and method for use

A device and method for protecting a blood vessel, and hence bodily tissues, against damage caused by particulate such as an embolus. The device may be a stent, for insertion in a large artery such as the ascending aorta, and may be combined with a filter. In one embodiment, the device includes an outer wire frame rather than a stent. The stent may be made of at least one layer of mesh, which is typically attached or mounted to the arterial wall. Typically only part of the stent is attached (for example at a reinforcing ring structure). Typically the size of the apertures of the mesh at the top portion of the stent is smaller than the bottom portion of the stent. The device and method are particularly useful in preventing blockages of flow to the brain, but have other uses as well. An electric charge may be placed on the device, for example, to prevent blood components from collecting.
Owner:KEYSTONE HEART

Prosthetic aortic valve

A prosthetic aortic valve is designed to be implanted in the natural aortic annulus and to extend into the ascending aorta to a point short of the right and left coronary arteries. Blood leakage around the valve is prevented by tension in one or more circumferential cords drawing annular tissue into sealing contact with an external sealing ring on the valve body. The security of the valve's attachment to a patient is assured with a plurality of interrupted sutures between a semirigid flange on the valve outer surface and the patient's aortic commissures and / or the patient's ascending aortic wall. The sutures are preferably attached to posts or cleats on the semirigid sewing flange, the flange being spaced apart from the valve inlet by the sealing ring.
Owner:DILLING EMERY W

Devices and methods for performing avascular anastomosis

A system for performing an end-to-side vascular anastomosis, including an anastomosis device, an application instrument and methods for performing a vascular anastomosis. The system is applicable for performing an anastomosis between a vascular graft and the ascending aorta in coronary artery bypass surgery, particularly in port-access CABG surgery. A first aspect of the invention includes a vascular anastomosis staple. A first configuration has two parts: an anchor member, forming the attachment with the target vessel wall and a coupling member, forming the attachment with the bypass graft vessel. The anastomosis is completed by inserting the coupling member, with the graft vessel attached, into the anchor member. A second configuration combines the functions of the anchor member and the coupling member into a one-piece anastomosis staple. A second aspect of the invention includes an anastomotic fitting, having an inner flange over which the graft vessel is everted and an outer flange which contacts the exterior surface of the target vessel. A tailored amount of compression applied by the inner and outer flanges grips the target vessel wall and creates a leak-proof seal between the graft vessel and the target vessel. A third aspect of the invention has a flange to which the graft vessel attaches, by everting the graft vessel over the flange, and a plurality of staple-like members which attach the flange and the everted end of the graft vessel to the wall of the target vessel to form the anastomosis
Owner:HEARTPORT

Medical Device

ActiveUS20080132747A1Reduce bending loadMinimizing contact pressureBlood pumpsIntravenous devicesAscending aortaImpeller
A temporary cardiac-assist device is disclosed. The device includes a pump assembly that is deployed in the ascending aorta or the heart. A torque transmission line couples the pump assembly to an external motor for driving impeller blades within the pump assembly. The pump assembly expands in size at its destination site for operation. In operation, neither the torque transmission line nor elements that support the impeller blades are under axial forces.
Owner:FBR MEDICAL INC

Method and Apparatus Useful for Transcatheter Aortic Valve Implantation

A guide catheter (30) is described for introduction into a patient's vasculature, to provide a substantially continuous guide lumen (28) within the vasculature to the ascending aorta (34), through which one or more other functional catheters (44) may be introduced and removed during the procedure. The guide catheter includes an aligner (70) at its distal region for aligning the position and / or inclination of the distal region of the guide catheter with respect to the ascending aorta. The aligner includes an embolic protection filter (88). The guide catheter is made of material collapsible / distensible in cross section to adopt a small shape when no catheter is present inside, and to distend to a large shape to accommodate passage of functional catheter therethrough. The cross-section shape collapses / distends by folding / unfolding of material without elastic stretching of the material.
Owner:SYMETIS

Methods and systems for performing thoracoscopic coronary bypass and other procedures

A method for closed-chest cardiac surgical intervention relies on viewing the cardiac region through a thoracoscope or other viewing scope and endovascularly partitioning the patient's arterial system at a location within the ascending aorta. The cardiopulmonary bypass and cardioplegia can be induced, and a variety of surgical procedures performed on the stopped heart using percutaneously introduced tools. The method of the present invention will be particularly suitable for forming coronary artery bypass grafts, where an arterial blood source is created using least invasive surgical techniques, and the arterial source is connected to a target location within a coronary artery while the patient is under cardiopulmonary bypass and cardioplegia
Owner:HEARTPORT

Antegrade cardioplegia catheter and method

A cardioplegia catheter is configured to extend into the ascending aorta with a proximal portion of the shaft extending into a left chamber of the heart through a aortic valve and out of the heart through a penetration in a wall thereof. The cardioplegia catheter has an occlusion member configured to occlude the ascending aorta between the brachiocephalic artery and the coronary ostia. An arterial return cannula delivers oxygenated blood to the arterial system downstream of the occlusion member, while cardioplegic fluid is delivered through a lumen in the cardioplegia catheter upstream of the occlusion member to induce cardioplegic arrest.
Owner:EDWARDS LIFESCIENCES LLC

Endoscopic arterial pumps for treatment of cardiac insufficiency and venous pumps for right-sided cardiac support

InactiveUS7144364B2Easily weanedEasy to removeStentsSurgeryRight-SidedLung
Methods for using blood pumps to treat heart failure are disclosed. The pump is mounted on an interior of a stent, and the stent is releasably mounted on a distal end of a catheter. The distal end of the catheter is inserted into a peripheral artery and advanced to position at a region of interest within the descending aorta, the ascending aorta, or the left ventricle. The stent and the pump are released from the catheter, and the pump is activated to increase blood flow downstream of the pump. The pump can also be positioned in the vena cava or used to treat right-sided heart failure following the insertion of an LVAD, or to improve venous return in patients with varicose veins. Non-stent pumps are described for insertion between the pulmonary vein and aorta, and between the vena cava and pulmonary artery designed for use during cardiac surgery.
Owner:BARBUT DENISE R +2

Valved aortic conduits

A valved conduit including a bioprosthetic aortic heart valve connected to a tubular conduit graft forming an ascending aorta. The conduit graft may attach to the heart valve in a manner that facilitates a redo operation in which the valve is replaced with another valve. A sewing ring may be pre-attached to the inflow end of the graft, and then the valve connected to a delivery holder advanced into the graft and secured to the sewing ring. Dry bioprosthetic valves coupled with conduit grafts sealed with a bioresorbable medium can be stored with the delivery holder.
Owner:EDWARDS LIFESCIENCES CORP

Noninvasive continuous arterial blood pressure measuring method and equipment

The invention discloses a noninvasive continuous human body arterial blood pressure measuring method and equipment. The noninvasive continuous human body central arterial blood pressure measuring method comprises the steps as follows: calculating individualization parameters of a to-be-measured person artery blood vessel network model according to acquired pulse wave forms of radial arteries and brachial arteries; calculating radial artery blood pressure systolic pressure, diastolic pressure and blood pressure wave forms according to radial artery pulse wave speeds and artery blood vessel network parameters; calculating ascending aorta-radial artery transfer functions; further calculating central arterial blood pressure. The noninvasive continuous human body central arterial blood pressure measuring equipment consists of a signal processing and analyzing unit, a pulse wave and motion signal acquisition unit worn on the wrist as well as an electro-cardio and motion signal acquisition unit worn in front of the chest. According to the method and the equipment, electrocardiograms, the radial artery blood pressure, the central arterial blood pressure as well as motions and postures are monitored simultaneously, heart rate and electro-cardio morphological parameters are analyzed in various motion states, artery network model parameters and blood pressure parameters, particularly central arterial pressure wave form parameters, are analyzed, and the method and the equipment have great significance for prevention and control on cardiovascular diseases, particularly for prevention and control on high-risk diseases such as the hypertension, the coronary heart disease and the like.
Owner:南京茂森电子技术有限公司

Aortic root prosthesis with compliant sinuses

An aortic root prosthesis for being implanted into a patient during a valve sparing surgery as a replacement for a biological aortic root segment of an ascending aorta is disclosed. The aortic root prosthesis includes a hollow, annular tube having proximal and distal ends, and an inner and outer wall. The distal end is for being attached to the ascending aorta. A plurality of sinuses are circumferentially connected to the proximal end of the tube. Each of the sinuses is adapted for being attached to the aortic wall. Each of the sinuses also includes contouring means for imparting a convex contour to an outer wall of the sinus to thereby create a space between the open leaflet and its respective sinus to prevent impact between the leaflet of the valve and the inner wall of the sinus.
Owner:HEINEMAN MEDICAL RES

Method and systems for performing thoracoscopic cardiac bypass and other procedures

A method for closed-chest cardiac surgical intervention relies on viewing the cardiac region through a thoracoscope or other viewing scope and endovascularly partitioning the patient's arterial system at a location within the ascending aorta. The cardiopulmonary bypass and cardioplegia can be induced, and a variety of surgical procedures performed on the stopped heart using percutaneously introduced tools. The method of the present invention will be particularly suitable for forming coronary artery bypass grafts, where an arterial blood source is created using least invasive surgical techniques, and the arterial source is connected to a target location within a coronary artery while the patient is under cardiopulmonary bypass and cardioplegia.
Owner:EDWARDS LIFESCIENCES LLC

Thoracic aorta stent graft with access region

ActiveUS20110257731A1Allow for flexibility of stentAllow flexibilityStentsBlood vesselsAscending aortaThoracic aorta
A stent graft (2) for placement in the thoracic arch of a patient has a first tubular body portion (6) with a first lumen therein for placement in the ascending aorta of a patient and a second tubular body portion (8) to extend along the thoracic arch and down the descending aorta. The second tubular body portion is of a lesser diameter than the first tubular body portion. There is a step portion (10) between the first body portion and the second body portion. The step portion is joined to and continuous with the first portion and the second portion. A first side of each of the first body portion, the step portion and the second body portion are substantially aligned so that there is a step (18) defined on a second side opposite to the first side of the body portion. There is an aperture (30) in the step portion and an internal tube (32) extending from the aperture towards the first body portion. The internal tube is divided along part of its length into at least two smaller internal tubes (34, 36) with the smaller internal tubes opening into the first lumen.
Owner:COOK MEDICAL TECH LLC +1

Minimally invasive cardiac surgery procedure

A minimally invasive approach for surgery on portions of the heart and great vessels. A parasternal incision is made extending across a predetermined number of costal cartilages, e.g., a right parasternal incision extending from the lower edge of the second costal cartilage to the superior edge of the fifth costal cartilage. One or more costal cartilages, e.g., the third and fourth, are then excised to provide access to the portion of the heart or great vessels of interest, for example between a point approximately three centimeters above supra annular ridge and the mid ventricular cavity, and a desired procedure completed. A minimally invasive procedure for repair or replacement of the aortic valve is disclosed that includes making a transverse incision of about 10 cm in length over the second or third intercostal space in the thorax of the patient, dividing the sternum transversely following the incision, retracting the transversely divided sternum, exposing the ascending aorta, and incising the ascending aorta to provide access to an area adjacent the aortic valve.
Owner:THE CLEVELAND CLINIC FOUND +1

Magnetic resonance imaging apparatus and magnetic resonance imaging method

According to one of the aspects of an MRI apparatus of the present invention, the MRI apparatus includes an imaging data acquiring unit and a blood flow information generating unit. The imaging data acquiring unit acquires imaging data from an imaging region including myocardium, without using a contrast medium, by applying a spatial selective excitation pulse to a region including at least a part of an ascending aorta for distinguishably displaying inflowing blood flowing into the imaging region. The blood flow information generating unit generates blood flow image data based on the imaging data.
Owner:TOSHIBA MEDICAL SYST CORP

Methods and apparatus for percutaneous aortic valve replacement

A delivery system and method for percutaneous aortic valve (PAV) replacement and apparatus used therein. A temporary aortic valve comprised of a reversibly expandable occluding means, such as balloons, surrounds a central catheter mechanism. The temporary valve is positioned within the ascending aorta, just above and downstream from the coronary ostia. The occluding means is configured such that, when fully expanded against the aortic wall, gaps are left that promote continuous coronary perfusion during the cardiac cycle. The temporary valve with occluding means substitutes for the function of the native aortic valve during its replacement. The native aortic valve is next dilated, and then ablated through deployment of low profile, elongated, sequentially delivered stents. The ablation stent(s) displace the native valve tissues and remain within the aortic annulus to receive and provide a structure for retaining the PAV. The PAV is delivered, positioned and deployed within the ablation stent(s) at the aortic annulus with precision and relative ease. Ablation of the native aortic valve removes the structural obstacles to precise PAV placement. The temporary aortic valve mediates the hemodynamic forces upon the devices as encountered by the surgeon following native valve ablation. The temporary valve also promotes patient stability through continuous coronary perfusion and a moderated transvalvular pressure gradient and regurgitation. Sequential delivery of low profile PAV components minimize the risk of trauma and injury to vascular tissues. Mathematical considerations for determining the optimum cross-sectional area for the temporary valve blood perfusion gaps are also described.
Owner:HOCOR CARDIOVASCULAR TECH

Minimally-invasive devices and methods for treatment of congestive heart failure

A method of treatment of congestive heart failure comprises the steps of introducing an aortic occlusion catheter through a patient's peripheral artery, the aortic occlusion catheter having an occluding member movable from a collapsed position to an expanded position; positioning the occluding member in the patient's ascending aorta; moving the occluding member from the collapsed shape to the expanded shape after the positioning step; introducing cardioplegic fluid into the patient's coronary blood vessels to arrest the patient's heart; maintaining circulation of oxygenated blood through the patient's arterial system; and reshaping an outer wall of the patient's heart while the heart is arrested so as to reduce the transverse dimension of the left ventricle. The ascending aorta may be occluded and cardioplegic fluid delivered by means of an occlusion balloon attached to the distal end of an elongated catheter positioned transluminally in the aorta from a femoral, subclavian, or other appropriate peripheral artery.
Owner:ETHICON INC

Methods and systems for performing thoracoscopic coronary bypass and other procedures

A method for closed-chest cardiac surgical intervention relies on viewing the cardiac region through a thoracoscope or other viewing scope and endovascularly partitioning the patient's arterial system at a location within the ascending aorta. The cardiopulmonary bypass and cardioplegia can be induced, and a variety of surgical procedures performed on the stopped heart using percutaneously introduced tools. The method of the present invention will be particularly suitable for forming coronary artery bypass grafts, where an arterial blood source is created using least invasive surgical techniques, and the arterial source is connected to a target location within a coronary artery while the patient is under cardiopulmonary bypass and cardioplegia
Owner:EDWARDS LIFESCIENCES LLC

Method and apparatus for percutaneous aortic valve replacement

A method for percutaneous aortic valve (PAV) replacement and a temporary aortic valve used to facilitate the same. The temporary valve is comprised of a reversibly expandable occluding means, such as balloons, surrounding a central catheter mechanism. The temporary valve is positioned within the ascending aorta, just above and downstream from the coronary ostia. The occluding means is configured such that, when fully expanded against the aortic wall, gaps are left that promote continuous coronary perfusion during the cardiac cycle. The native aortic valve is next dilated, and then ablated through deployment of an ablation stent. The ablation stent displaces the native valve tissues and remains within the aortic annulus to receive and retain the PAV. The PAV can then be positioned and deployed within the ablation stent with precision and ease. Ablation of the native aortic valve removes the structural obstacles to precise PAV placement. The temporary aortic valve mediates the hemodynamic forces encountered by the surgeon following native valve ablation. The temporary valve also promotes patient stability through continuous coronary perfusion and a moderated transvavlular pressure gradient. Mathematical considerations for determining the optimum cross-sectional area for the temporary valve blood perfusion gaps are also described.
Owner:HOCOR CARDIOVASCULAR TECH

Method and apparatus for percutaneous delivery and deployment of a cardiovascular prosthesis

Catheter apparatuses and methods are provided for repairing heart valves, particularly mitral valves. The method includes providing a catheter having an elongate, flexible body, with a proximal end and a distal end. The distal end can be transluminally advanced from the left atrium through the mitral valve and along the left ventricular outflow tract into the ascending aorta. A valve repair device is deployed to permanently connect leaflets at a mid-section of a mitral valve while permitting medial and lateral portions of the natural leaflets to open and close. The valve repair device detachably connects the distal and proximal ends of the catheter.
Owner:CEDARS SINAI MEDICAL CENT

Heart Assist Devices, Systems and Methods

An apparatus and method for use in assisting a human heart are disclosed. The apparatus comprises an aortic compression means which may be fully implanatable, a fluid reservoir and a pump means adapted to pump a fluid from the reservoir to the aortic compression means so as to actuate the aortic compression means at least partly in counterpulsation with the patient's heart. In addition, the device is adapted to be wholly positioned within the right chest cavity of the patient. The aortic compression means of the device may be curved along its length so as to substantially replicate the curve of the ascending aorta.
Owner:NUWELLIS INC

Multichannel catheter

A single, multichannel catheter is useful for extracorporeal circulation of blood to a patient undergoing cardiovascular treatments or surgery. The catheter has three independent channels and an expandable balloon at one end of the catheter. The first channel is largest and allows for delivery of blood to a patient in an amount sufficient to maintain the patient's metabolism and perfusion throughout the treatment or surgery. The second and third channels are smaller and integrated into the wall of the first channel. The second channel is for delivering a biologically active fluid to the heart and / or venting the left heart. The third channel is for delivering a fluid to the balloon for its expansion when positioned in the ascending aorta to occlude the flow of blood to the heart. One or more perfusion openings may be located in the descending aorta.
Owner:SORIN GRP USA INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products