Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

141 results about "Atherectomy" patented technology

Atherectomy is a minimally invasive endovascular surgery technique for removing atherosclerosis from blood vessels within the body. It is an alternative to angioplasty for the treatment of peripheral artery disease, but the studies that exist are not adequate to determine if it is superior to angioplasty. It has also been used to treat coronary artery disease, albeit ineffectively.

Apparatus and method for removing occluding material from body lumens

An atherectomy catheter includes a catheter body having a blade assembly at its distal end. The blade assembly includes first blade and a second blade, where each blade has an opposed cutting edge. At least one of the cutting edges will have a penetrating point formed thereon. Preferably, both edges will have at least one aligned cutting point, more preferably at least two or more aligned cutting points. When the blades are actuated to shear tissue therebetween, the cutting points act to penetrate and capture the material to be sheared.
Owner:FOX HOLLOW TECH

System and methods for performing endovascular procedures

A system for inducing cardioplegic arrest and performing an endovascular procedure within the heart or blood vessels of a patient. An endoaortic partitioning catheter has an inflatable balloon which occludes the ascending aorta when inflated. Cardioplegic fluid may be infused through a lumen of the endoaortic partitioning catheter to stop the heart while the patient's circulatory system is supported on cardiopulmonary bypass. One or more endovascular devices are introduced through an internal lumen of the endoaortic partitioning catheter to perform a diagnostic or therapeutic endovascular procedure within the heart or blood vessels of the patient. Surgical procedures such as coronary artery bypass surgery or heart valve replacement may be performed in conjunction with the endovascular procedure while the heart is stopped. Embodiments of the system are described for performing: fiberoptic angioscopy of structures within the heart and its blood vessels, valvuloplasty for correction of valvular stenosis in the aortic or mitral valve of the heart, angioplasty for therapeutic dilatation of coronary artery stenoses, coronary stenting for dilatation and stenting of coronary artery stenoses, atherectomy or endarterectomy for removal of atheromatous material from within coronary artery stenoses, intravascular ultrasonic imaging for observation of structures and diagnosis of disease conditions within the heart and its associated blood vessels, fiberoptic laser angioplasty for removal of atheromatous material from within coronary artery stenoses, transmyocardial revascularization using a side-firing fiberoptic laser catheter from within the chambers of the heart, and electrophysiological mapping and ablation for diagnosing and treating electrophysiological conditions of the heart.
Owner:EDWARDS LIFESCIENCES LLC

Intravascular system for occluded blood vessels and guidewire for use therein

A system and method for opening a lumen in an occluded blood vessel, e.g., a coronary bypass graft, of a living being. The system comprises an atherectomy catheter having a working head, e.g., a rotary impacting impeller, and a debris extraction sub-system. The atherectomy catheter is located within a guide catheter. The working head is arranged to operate on, e.g., impact, the occlusive material in the occluded vessel to open a lumen therein, whereupon some debris may be produced. The debris extraction sub-system introduces an infusate liquid at a first flow rate adjacent the working head and withdraws that liquid and some blood at a second and higher flow rate, through the guide catheter to create a differential flow adjacent the working head, whereupon the debris is withdrawn in the infusate liquid and blood for collection outside the being's body. The introduction of the infusate liquid may also be used to establish an unbalanced flow adjacent the working head to enable the atherectomy catheter to be steered hydrodynamically. A guide wire having an inflatable balloon on its distal end may be used with the atherectomy catheter to block the flow of debris distally, while enabling distal tissues to be perfused with an oxygenating liquid. At least one flow control port may be provided in the guide catheter to prevent collapse of the vessel being revascularized. A cradle is provided to fix the guide catheter and guide wire in position within the body of the being while enabling the atherectomy catheter to be advanced along the guide wire and through the guide catheter. The guide catheter includes a wear resistant coating and is constructed so that its distal end includes plural sections of different outside diameters, with the distal most section being of the smallest outside diameter. A control console is provided to establish various modes of operation of the system based on manual inputs via switches or voice commands via voice recognition circuitry. A video panel displays the various modes of operation and instructions to the operator.
Owner:KENSEY NASH CORP

System and method of use for revascularizing stenotic bypass grafts and other occluded blood vessels

InactiveUS6843797B2Effectively revascularizingSafely revascularizingBalloon catheterCannulasAtherectomyThree vessels
A system and method for opening a lumen in an occluded blood vessel, e.g., a coronary bypass graft, of a living being. The system comprises an atherectomy catheter having a working head, e.g., a rotary impacting impeller, and a debris extraction sub-system. The atherectomy catheter is located within a guide catheter. The working head is arranged to operate on, e.g., impact, the occlusive material in the occluded vessel to open a lumen therein, whereupon some debris may be produced. The debris extraction sub-system introduces an infusate liquid at a first flow rate adjacent the working head and withdraws that liquid and some blood at a second and higher flow rate, through the guide catheter to create a differential flow adjacent the working head, whereupon the debris is withdrawn in the infusate liquid and blood for collection outside the being's body. The introduction of the infusate liquid may also be used to establish an unbalanced flow adjacent the working head to enable the atherectomy catheter to be steered hydrodynamically. A guide wire having an inflatable balloon on its distal end may be used with the atherectomy catheter to block the flow of debris distally, while enabling distal tissues to be perfused with an oxygenating liquid. At least one flow control port may be provided in the guide catheter to prevent collapse of the vessel being revascularized. A cradle is provided to fix the guide catheter and guide wire in position within the body of the being while enabling the atherectomy catheter to be advanced along the guide wire and through the guide catheter.
Owner:KENSEY NASH CORP

System and method of use for agent delivery and revascularizing of grafts and vessels

InactiveUS6905505B2Effectively revascularizingAvoid flowBalloon catheterCannulasImpellerBiological body
A system and method for opening a lumen in an occluded blood vessel, e.g., a coronary bypass graft, of a living being. The system comprises an atherectomy catheter having a working head, e.g., a rotary impacting impeller, and a debris extraction sub-system. The atherectomy catheter is located within a guide catheter. The working head is arranged to operate on, e.g., impact, the occlusive material in the occluded vessel to open a lumen therein, whereupon some debris may be produced. The debris extraction sub-system introduces an infusate liquid at a first flow rate adjacent the working head and withdraws that liquid and some blood at a second and higher flow rate, through the guide catheter to create a differential flow adjacent the working head, whereupon the debris is withdrawn in the infusate liquid and blood for collection outside the being's body. The introduction of the infusate liquid may also be used to establish an unbalanced flow adjacent the working head to enable the atherectomy catheter to be steered hydrodynamically. A guide wire having an inflatable balloon on its distal end may be used with the atherectomy catheter to block the flow of debris distally, while enabling distal tissues to be perfused with an oxygenating liquid. At least one flow control port may be provided in the guide catheter to prevent collapse of the vessel being revascularized. A cradle is provided to fix the guide catheter and guide wire in position within the body of the being while enabling the atherectomy catheter to be advanced along the guide wire and through the guide catheter.
Owner:KENSEY NASH CORP

Devices and methods for preventing distal embolization using flow reversal by partial occlusion of the brachiocephalic artery

InactiveUS6837881B1Prevention of distal embolizationMinimizing blood lossStentsBalloon catheterAtherectomyPercutaneous angioplasty
The invention provides a medical device having a catheter and one or more expandable constricting / occluding members. The catheter is adapted for use with therapeutic or diagnostic devices, including an angioplasty / stent catheter and an atherectomy catheter. The constrictor / occluder is mounted at the distal end of the catheter. Manometers may be mounted distal to one or more constrictors for measuring pressure distal to the constrictor(s). Methods of using the devices for preventing distal embolization during extracranial or intracranial carotid procedures or vertebral artery procedures by reversing blood flow in an internal carotid artery, an external carotid artery, and / or a common carotid artery toward the subclavian artery are disclosed.
Owner:ZOLL CIRCULATION

Atherectomy catheter with combined OCT/IVUS imaging

Catheter device for performing atherectomy, comprising an atherectomy catheter, an OCT sensor, an IVUS sensor, position sensors and an image processing unit, which is embodied for creating combined 2D and / or 3D images based on the data of the sensors.
Owner:SIEMENS HEALTHCARE GMBH

Embolization protection system for vascular procedures

Apparatus and methods are described for effective removal of emboli or harmful fluids during vascular procedures, such as angiography, balloon angioplasty, stent deployment, laser angioplasty, atherectomy, intravascular ultrasonography and other therapeutic and diagnostic procedures. A catheter with an occluder mounted at its distal end creates an occlusion proximal to the lesion. The catheter provides a pathway for introducing a treatment catheter. Prior to, during or subsequent to the procedure, suction is activated to establish retrograde flow to remove emboli from the site. Additionally, a thin catheter with a distal fluid ejection nozzle maybe introduced distal to the treatment site to rinse emboli from the treatment site. The suction flow and / or ejected fluid flow may be varied in a pulsatile manner to simulate regular blood flow and / or perturb settled emboli into being captured that may otherwise not be collected. The method establishes a protective environment before any devices enter the site to be treated.
Owner:CHINE LLC

Methods and devices for cutting and abrading tissue

The present invention provides an atherectomy catheter which has a cutting element that is able to cut both soft tissue and hard tissue, and methods of cutting material from a blood vessel lumen using a rotating cutting element. The cutting element has a sharp cutting edge that surrounds a cup-shaped surface and at least one surface of abrasive material. The cup-shaped surface directs the cut material into a tissue chamber. The cutting edge and the cup-shaped surface together are well suited to cut and remove relatively soft tissue from the blood vessel. The abrasive material surface in combination with the cutting element is well suited to abrade and remove hard material from the blood vessel.
Owner:TYCO HEALTHCARE GRP LP

Reslution optical & ultrasound devices for imaging and treatment of body lumens

A rotationally vibrating imaging catheter and method of utilization has an array of ultrasound or optical transducers and an actuator along with signal processing, display, and power subsystems. The actuator of the preferred embodiment is a solid-state nitinol actuator. The actuator causes the array to oscillate such that the tip of the catheter is rotated through an angle equal to or less than 360 degrees. The tip is then capable of rotating back the same amount. This action is repeated until the desired imaging information is acquired. The rotationally vibrating catheter produces more imaging points than a non-rotating imaging catheter and eliminates areas of missing information in the reconstructed image.Rotationally vibrating catheters offer higher image resolution than stationary array catheters and greater flexibility and lower costs than mechanically rotating imaging catheters.The rotationally vibrating array carried on a catheter is vibrated or rocked forward and backward to allow for acquisition of three-dimensional information within a region around the transducer array.The addition of adjunctive therapies to the imaging catheter enhances the utility of the instrument. Examples of such therapies include atherectomy, stent placement, thrombectomy, embolic device placement, and irradiation.
Owner:LENKER JAY A

Automatic atherectomy system

An automatic atherectomy system uses a rotary burr at the tip of a catheter as a sensing device, in order to measure both electrical conductivity and permittivity of surrounding tissue at multiple frequencies. From these parameters it is determined which tissue lies in different directions around the tip. A servo system steers the catheter tip in the direction of the tissue to be removed. In non-atherectomy applications the rotary burr can be replaced with any desired tool and the system can be used to automatically steer the catheter to the desired position. The steering may be done hydraulically, by pressurizing miniature bellows located near the catheter tip.
Owner:KARDIUM

Expandable tip atherectomy method and apparatus

A device for removing obstructions from vessels or small openings in the body, comprising a rotatable ablator tip which is guided to the obstruction in a reduced diameter configuration, expanded and rotated to remove the obstruction, and contracted to remove the device from the body. The variably expandable abrasive tip coil in one embodiment of the invention is actuated by a piston means disposed within the coil. A pair of collars is attached to the ends of the coil, and the piston effects relative longitudinal axial movement of the collars and, hence, the respective ends of the coil tip. When the ends of the coil tip are so moved with respect to one another, expansion and contraction of the diameter of the coil tip results. In another embodiment of the invention, the expansion tip coil is actuated by an expandable and contractible bellows means disposed within the coil, instead of the piston means. In another embodiment of the invention, the expansion and contraction of the coil tip are effected by longitudinal axial movement of an internal coil attached to one end of the coil tip, within an outer coil attached to the other end of the coil tip. In another embodiment of the invention, expansion and contraction of the coil tip are effected by an inflatable balloon disposed within the coil tip. The balloon expansion means enlarges preferably at the central portion of the coil to make a bulge. +RR The questions raised in reexamination request No. 90 / 003,360, filed Mar. 15, 1994, and 90 / 003,723 filed Feb. 14, 1995, have been considered and the results thereof are reflected in this reissue patent which constitutes the reexamination certificate required by 35 U.S.C. 307 as provided in 37 CFR 1.570(e).
Owner:ZACCA NADIM M
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products