Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1189results about "Multiple hybrid/EDL capacitors" patented technology

Supercapacitor having electrode material comprising single-wall carbon nanotubes and process for making the same

The present invention relates to a supercapacitor, also known as an electrical double-layer capacitor or ultracapacitor, having electrode material comprising single-wall carbon nanotubes. The carbon nanotubes can be derivatized with functional groups. The electrode material is made by preparing a polymer-nanotube suspension comprising polymer and nanotubes, forming the polymer-nanotube suspension into a polymer-nanotube composite of the desired form, carbonizing the polymer-nanotube composite to form a carbonaceous polymer-nanotube material, and activating the material. The supercapacitor includes electrode material comprising activated carbonaceous polymer-nanotube material in contact with current collectors and permeated with an electrolyte, which may be either fluid or solid. In the case of a fluid or compressible electrolyte, an electrolyte-permeable separator or spacer is interposed between the electrodes to keep the electrodes from shorting. The supercapacitor made with electrodes comprising underivatized single-wall carbon nanotubes and polymer that has been carbonized and activated appears to operate as a non-Faradaic supercapacitor.
Owner:GEORGIA TECH RES CORP

Power system for high temperature applications with rechargeable energy storage

A power system adapted for supplying power in a high temperature environment is disclosed. The power system includes a rechargeable energy storage that is operable in a temperature range of between about seventy degrees Celsius and about two hundred and fifty degrees Celsius coupled to a circuit for at least one of supplying power from the energy storage and charging the energy storage; wherein the energy storage is configured to store between about one one hundredth (0.01) of a joule and about one hundred megajoules of energy, and to provide peak power of between about one one hundredth (0.01) of a watt and about one hundred megawatts, for at least two charge-discharge cycles. Methods of use and fabrication are provided. Embodiments of additional features of the power supply are included.
Owner:FASTCAP SYST

Supercapacitor having electrode material comprising single-wall carbon nanotubes and process for making the same

The present invention relates to a supercapacitor, also known as an electrical double-layer capacitor or ultracapacitor, having electrode material comprising single-wall carbon nanotubes. The carbon nanotubes can be derivatized with functional groups. The electrode material is made by preparing a polymer-nanotube suspension comprising polymer and nanotubes, forming the polymer-nanotube suspension into a polymer-nanotube composite of the desired form, carbonizing the polymer-nanotube composite to form a carbonaceous polymer-nanotube material, and activating the material. The supercapacitor includes electrode material comprising activated carbonaceous polymer-nanotube material in contact with current collectors and permeated with an electrolyte, which may be either fluid or solid. In the case of a fluid or compressible electrolyte, an electrolyte-permeable separator or spacer is interposed between the electrodes to keep the electrodes from shorting. The supercapacitor made with electrodes comprising underivatized single-wall carbon nanotubes and polymer that has been carbonized and activated appears to operate as a non-Faradaic supercapacitor.
Owner:GEORGIA TECH RES CORP

Energy storage device

An energy storage device comprising at least one negative electrode, wherein each negative electrode is individually selected from (i) an electrode comprising negative battery electrode material; (ii) an electrode comprising capacitor electrode material; (iii) a mixed electrode comprising either—a mixture of battery and capacitor electrode material or—a region of battery electrode material and a region of capacitor electrode material, or—a combination thereof, and wherein the energy storage device either comprises at least one electrode of type (iii), or comprises at least one electrode of each of types (i) and (ii),—at least one positive electrode, wherein the positive electrode comprises positive battery electrode material and a charging ability-increasing additive, such as one or a mixture of: (a) carbon nanomaterial, vapour grown carbon fibre, fullerene, or a mixture thereof, and (b) tin dioxide conductive materials.
Owner:COMMONWEALTH SCI & IND RES ORG +1

Part solid, part fluid and flow electrochemical cells including metal-air and li-air battery systems

The invention provides part solid, part fluid and flow electrochemical cells, for example, metal-air and lithium-air batteries and three-dimensional electrode arrays for use in part solid, part fluid electrochemical and flow cells and metal-air and lithium-air batteries.
Owner:CALIFORNIA INST OF TECH

Power storage device

To provide a sheet-like power storage device which can be curved or bent in at least one axis direction. A power storage device includes a power storage element including a plurality of flexible sheet-like positive electrodes each having one end portion fixed to a positive electrode tab; a plurality of flexible sheet-like negative electrodes each having one end portion fixed to a negative electrode tab; and a plurality of flexible sheet-like separators. The positive electrodes and the negative electrodes are alternately stacked so as to overlap with each other with the separator interposed therebetween. The power storage element is sealed in a flexible exterior body.
Owner:SEMICON ENERGY LAB CO LTD

Supercapacitor with high energy density

The energy content of supercapacitor is determined by its capacitance value and working voltage. To attain a high capacitance and a high voltage, several pieces of electrodes and separators are spirally wound with edge sealing to form a bipolar supercapacitor in cylindrical, oval or square configuration. While the winding operation effectively provides a large surface area for high capacitance, the bipolar packaging instantly imparts a unitary roll a minimum working voltage of 5V on using an organic electrolyte. The bipolar roll is a powerful building block for facilitating the assembly of supercapacitor modules. Using containers with multiple compartments, as many bipolar rolls can be connected in series, in parallel or in a combination of the two connections to fabricate integrated supercapacitors with high energy density as required by applications.
Owner:GAINIA INTELLECTUAL ASSET SERVICES

Organic electrolyte capacitor

There is provided an organic electrolyte capacitor having electrodes on current collectors that have holes penetrating the front and rear surfaces, in which electrode materials formed an the through-holes of the current collectors seldom fall off and high energy density and high power density can be obtained. The organic electrolyte capacitor includes positive electrodes, negative electrodes and an electrolyte capable of transferring lithium ions, in which the positive electrodes contain a substance capable of carrying lithium ions and / or anions reversibly as a positive electrode active material, the negative electrodes contain a substance capable of carrying lithium ions as a negative electrode active material, the positive and negative electrodes possess the positive or negative electrode active material layers on an electrode substrate that has conductive layers made of conductive materials on current collectors, which have through-holes, and the negative electrodes carry lithium electrochemically.
Owner:SUBARU CORP

Quick recharge energy storage device, in the form of thin films

The quick recharge energy storage device has a sufficient capacity due to the combination of a micro-battery and at least one micro-supercapacitor connected between two terminals of an integrated circuit. The integrated circuit, powered by the micro-battery, monitors high-speed (less than one second) charge of the micro-supercapacitors from an external energy source. The micro-supercapacitor can be connected in parallel with the micro-battery so as to subsequently recharge the micro-battery during the necessary time. The micro-battery provides a sufficient energy capacity, while the micro-supercapacitors allow high recharging speeds compatible with various applications (smart cards, smart labels, micro-system power supply, etc . . . ). The micro-battery and micro-supercapacitors are preferably formed on the same substrate, either side by side or stacked. Series connection of several micro-supercapacitors provides sufficient voltage for charging the micro-battery.
Owner:COMMISSARIAT A LENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES

Fuel cell powered electric vehicle

In a fuel cell powered electric vehicle having a fuel cell system and an electricity storing device for storing electricity generated by the fuel cell system, the fuel cell system and the electricity storing device stored in a box are fixed to a lower side of a floor of a cabin. A plate is provided to separate the fuel cell system and the electricity storing device in the interior of the box from each other. In addition, through holes are provided in the floor of the cabin for connecting between a refrigerant inlet port and a refrigerant outlet port of the electricity storing device and the cabin.
Owner:HONDA MOTOR CO LTD

Electric storage unit

An electric power storage unit includes plural storage element blocks, an external bus bar for electrically connecting the storage element blocks, a base made of metal for fixing the storage element blocks, and a cover fixed to the base for accommodating the storage element blocks. Each of the storage element blocks includes plural electric power storage elements connected electrically to each other, and a case made of heat-conductive insulating resin for holding the electric power storage elements. This electric power storage unit reduces variation of cooling of the electric power storage elements, hence having high reliability.
Owner:PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO LTD

Nanoparticle ultracapacitor

Particular aspects provide capacitors, and particularly ultracapacitors, comprising molecules suitable to substantially increasing the capacitance of the capacitor, and methods for making same Particular aspects provide ultracapacitors that include nanoparticles optionally coated with molecules, such as polymer electrolytes. Certain aspects provide an energy storage device or capacitor, comprising at least three layers sealed in a fluid-tight covering, wherein a first layer comprises at least one electrolytic polymer molecule of positive charge and at least one nanoparticle; a second dielectric layer comprising at least one insulative polymer; a third layer comprising at least one electrolytic polymer molecule of negative charge and at least one nanoparticle. In certain aspects, the electrolytic polymer of the first layer comprises at least one high charge density polymer electrolyte of positive charge, and wherein the electrolytic polymer of the third layer comprises at least one high charge density polymer electrolyte of negative charge.
Owner:TANGREDI PATRICIA

Electric double layer capacitor enclosed in polymer housing

The present invention relates to an electric double layer capacitor comprised of carbonaceous electrodes enclosed in polymer housing, using conductive polymer current collectors intrinsically bonded to both the electrodes and the enclosure, and a method for constructing the same. The present invention also relates to bipolar stacks of electric double layer capacitor cells and a method for producing the same.
Owner:HARVEY TROY A

Electric device assembly and film-covered electric device structure

Assembled battery (80) includes two battery cells (20A, 20B) arranged in parallel, which are accommodated in single parallel-arranged module (50). Inter-battery airflow passage (65) is formed between parallel-arranged modules so as to allow cooling air to pass therethrough. Pressure contact members (60) each have hollow portion (61) formed by solid portion (66) and thin wall portion (61a) and are arranged in layers. Hollow portion (61) forms a cooling air passage. Cooling air supplied to the cooling air passage is sent to battery cell (20B) on the rear side, and directed and supplied toward the central part of battery cell (20B). Solid portions (66) in area A hold electrode tab (25) therebetween while pressure contact members (60) are in contact with each other in area B.
Owner:NEC CORP

Electric double layer capacitor and process for its production

An electric double layer capacitor includes, contained in a casing, an electrolyte, a positive electrode and a negative electrode each being an electrode containing carbon black, to form an electric double layer at the interface with the electrolyte, and a separator interposed between the positive electrode and the negative electrode. At least one electrode of the positive electrode and the negative electrode has protruded portions or bent portions formed continuously in the height direction against the bottom face of the casing. Further, a space due to the height of the protruded portions or the bent portions is formed between the at least one electrode and the separator.
Owner:MITSUBISHI ELECTRIC CORP +1

High-Power Ultracapacitor Energy Storage Cell Pack and Coupling Method

An ultracapacitor energy storage cell pack including an ultracapacitor assembly including a plurality of ultracapacitors, each ultracapacitor including opposite ends with connection terminals protruding therefrom for directly connecting the ultracapacitors end-to-end in series; and a plurality of interconnections for mechanically and electrically interconnecting the ultracapacitors end-to-end in series without the connection terminals from adjacent ultracapacitors contacting each other, preventing mechanical stress in the connection studs.
Owner:SHEPPARD MULLIN RICHTER & HAMPTON

Battery management system with distributed wireless sensors

A system for monitoring parameters of an energy storage system having a multiplicity of individual energy storage cells. A radio frequency identification and sensor unit is connected to each of the individual energy storage cells. The radio frequency identification and sensor unit operates to sense the parameter of each individual energy storage cell and provides radio frequency transmission of the parameters of each individual energy storage cell. A management system monitors the radio frequency transmissions from the radio frequency identification and sensor units for monitoring the parameters of the energy storage system.
Owner:LAWRENCE LIVERMORE NAT SECURITY LLC

Power storage device control system, power storage system, and electrical appliance

Deterioration of a power storage device is reduced. Switches that control the connections of a plurality of power storage devices separately are provided. The switches are controlled with a plurality of control signals, so as to switch between charge and discharge of each of the power storage devices or between serial connection and parallel connection of the plurality of power storage devices. Further, a semiconductor circuit having a function of carrying out arithmetic is provided for the power storage devices, so that a control system of the power storage devices or a power storage system is constructed.
Owner:SEMICON ENERGY LAB CO LTD

Capacitor bank, laminated bus, and power supply apparatus

A capacitor bank includes a laminated bus bar having a high potential conductive layer and a low potential conductive layer disposed in close proximity at opposing surfaces of an intervening insulation layer. The bank also includes a plurality of bus capacitors electrically connected to the laminated bus bar. The laminated bus bar and the bus capacitors having a combined inductance sufficiently low such that the bus capacitors are electrically connected effectively in parallel with the laminated bus bar.
Owner:GENERAL ELECTRIC CO

Flow ultracapacitor

The present application is generally directed towards electrochemical energy storage devices. The devices comprise electrode material suspended in an appropriate electrolyte. Such devices are capable of achieving economical $ / kWh(cycle) values and will enable much higher power and cycle life than currently used devices.
Owner:BASF AG

Stacks of internally connected surface-mediated cells and methods of operating same

An energy storage stack of at least two surface-mediated cells (SMCs) internally connected in parallel or in series. The stack includes: (A) At least two SMC cells, each consisting of (i) a cathode comprising a porous cathode current collector and a cathode active material; (ii) a porous anode current collector; and (iii) a porous separator disposed between the cathode and the anode; (B) A lithium-containing electrolyte in physical contact with all the electrodes, wherein the cathode active material has a specific surface area no less than 100 m2 / g in direct physical contact with the electrolyte to receive lithium ions therefrom or to provide lithium ions thereto; and (C) A lithium source. This new-generation energy storage device exhibits the highest power densities of all energy storage devices, much higher than those of all the lithium ion batteries, lithium ion capacitors, and supercapacitors.
Owner:GLOBAL GRAPHENE GRP INC +1

Accumulator device

A package case is structured by a plurality of substantially identical and flat frames stacked on one another. Flat laminate cells (accumulator cells) are individually accommodated in the frames and stacked on one another, so that the number of flat laminate cells (accumulator cells) can readily be changed simply by increasing / decreasing the number of frames to be stacked to meet energy needs and the like. The accumulator device is segmented using the plurality of flat frames, so that externally applied impacts can readily be dispersed and the impact transmitted to the flat laminate cells (accumulator cells) can be reduced without reinforcing the accumulator device 1 with more than necessary strength.
Owner:SUBARU CORP

Electrochemical supercapacitor/lead-acid battery hybrid electrical energy storage device

A hybrid lead-acid battery / electrochemical capacitor electrical energy storage device. The lead-acid battery and electrochemical capacitor reside in the same case and are electrically connected. Preferably, a hybrid device of the present invention includes at least one non-polarizable positive electrode, at least one non-polarizable negative electrode, and at least one polarizable electric double layer negative electrode. Separators reside between the electrodes and the separators and electrodes are impregnated with an aqueous sulfuric acid electrolyte. A hybrid device of the present invention exhibits high power characteristics.
Owner:UNIVERSAL SUPERCAPACITORS LLC

Lithium metal foil for battery or capacitor

A lithium ion capacitor includes, as a lithium ion supply source, a lithium metal foil for batteries or capacitors. A current collector 4 and a separator 3 formed of a paper or resin nonwoven fabric are preliminarily pressure-bonded and integrated to opposite surfaces of a lithium metal foil 1 for batteries or capacitors.
Owner:SUBARU CORP

Method of making a multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes

<heading lvl="0">Abstract of Disclosure< / heading> A method of making a double layer capacitor consists of the steps of: impregnating each of a plurality of carbon preforms with a metal; forming a plurality of current collector foils, each of the plurality of current collector foils having a tab portion and a paddle portion; forming a plurality of electrodes by positioning one of the plurality of carbon preforms against respective paddle portions of each of the plurality of current collector foils, wherein each of the plurality of electrodes comprises one of the plurality of current collector foils and one of the plurality of carbon preforms; stacking each of the plurality of electrodes such that tab portions of adjacent ones of the plurality of current collector foils are offset, thereby forming an electrode stack; interposing respective porous separator portions between each of the plurality of electrodes, wherein the porous separator portions function as electrical insulators between the adjacent ones of the plurality of electrodes preventing electrical shorting against each other; applying a modest constant pressure against the electrode stack; saturating the electrode stack with an electrolytic solution; and maintaining the electrode stack immersed within the electrolytic solution.
Owner:TESLA INC

Active and passive cooling for an energy storage module

The present disclosure relates to cooling an energy storage module using passive and active cooling techniques. Passive cooling is provided by storing heat in a phase change material that is contact with the energy storage cells of the energy storage module. Active cooling is provided by circulating coolant through coolant passages that are in thermal contact with the energy storage cells. A control system for determining the temperature of the energy storage module and controlling coolant flow when the temperature reaches a predetermined threshold is disclosed.
Owner:CATERPILLAR INC

Hybrid Vehicle Propulsion Energy Storage System

An energy storage cell pack cradle assembly for holding multiple rows of energy storage cells oriented along a dominant axis of vibration includes a first cradle member including a plurality of energy storage cell body supporting structures including respective holes; a second cradle member including a plurality of energy storage cell body supporting structures including respective holes; and one or more fasteners connecting the first cradle member and the second cradle member together. The energy storage cell body supporting structures are configured to structurally support the energy storage cells, with the energy storage cells oriented along a dominant axis of vibration, by energy storage cell bodies of the energy storage cells with respective electrically conductive terminals extending through the respective holes without structural support of the electrically conductive terminals by the cradle members.
Owner:SHEPPARD MULLIN RICHTER & HAMPTON

Electric storage device

To provide an electric storage device whose negative electrode can be doped with lithium ions in a short time and whose resistance can be lowered. An electric storage device including a unit that is obtained by alternately stacking a positive-electrode sheet 9 and a negative-electrode sheet 10 with a separator 3 interposed therebetween, the positive electrode sheet 9 including a positive-electrode active material layer 1 and a positive-electrode charge collector 4, and the negative electrode sheet 10 including a negative-electrode active material layer 2 and a negative-electrode charge collector 5, in which a foil, an etching foil, or a porous lath foil is used as the positive-electrode charge collector 4 and the negative-electrode charge collector 5, a cut is made in a coating area of the positive-electrode active material layer 1 and the negative-electrode active material layer 2, and a lithium supply source is disposed so as to be opposed to the negative electrode sheet 10 of the unit.
Owner:TOKIN CORP

Lithium ion capacitor

A lithium ion capacitor having high energy density, high output density, high capacity and high safety is provided.A lithium ion capacitor comprising a positive electrode 1 made of a material capable of being reversibly doped with lithium ions and / or anions, a negative electrode 2 made of a material capable of being reversively doped with lithium ions, and an aprotic organic solution of a lithium salt as an electrolytic solution, wherein the positive electrode 1 and the negative electrode 2 are laminated or wound with a separator interposed between them, the area of the positive electrode 1 is smaller than the area of the negative electrode 2, and the face of the positive electrode 1 is substantially covered by the face of the negative electrode 2 when they are laminated or wound.
Owner:SUBARU CORP

Packaging structure of electric storage cells

Heat generated at electric storage cells are released using intermediate plates that are disposed at intervals of a predetermined number of layers in a lamination of the electric storage cells so as to retain the stacking surfaces of the electric storage cells therebetween, and at the same time, stacking surfaces of the cells are pressed with predetermined pressures by applying loads to the intermediate plates using wires provided for frame supports that are engaged with the intermediate plates. With this, the characteristics of the cells can be stabilized against both vibration and heat, and the performance of the entire package can be improved.
Owner:FUJI JUKOGYO KK
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products