Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3900results about "Blood flow measurement" patented technology

Signal processing apparatus

The present invention involves method and apparatus for analyzing two measured signals that are modeled as containing primary and secondary portions. Coefficients relate the two signals according to a model defined in accordance with the present invention. In one embodiment, the present invention involves utilizing a transformation which evaluates a plurality of possible signal coefficients in order to find appropriate coefficients. Alternatively, the present invention involves using statistical functions or Fourier transform and windowing techniques to determine the coefficients relating to two measured signals. Use of this invention is described in particular detail with respect to blood oximetry measurements.
Owner:JPMORGAN CHASE BANK NA

System and method for monitoring a parameter associated with the performance of a heart

An intrabody implantable system for long-term, real time monitoring of at least one parameter associated with heart performance. The system includes (a) a first sensor being implantable within a heart and being for collecting information pertaining to a pressure in a first cavity of the heart; (b) at least one additional sensor being implantable in an blood vessel supporting blood flow into or out of a second cavity of the heart, the at least one additional sensor being for collecting information pertaining to a pressure and a flow within the blood vessel; and (c) at least one device implantable in the body and being in data communication with the first sensor and the at least one additional sensor, the at least one device being for receiving the information pertaining to the pressure in the first cavity of the heart and the information pertaining to the pressure and the flow within the blood vessel and for relaying the information pertaining to the pressure in the first cavity of the heart and the information pertaining to the pressure and the flow within the blood vessel outside the body.
Owner:REMON MEDICAL TECH

Method and system for patient-specific modeling of blood flow

Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model.
Owner:HEARTFLOW

Apparatus and methods of bioelectrical impedance analysis of blood flow

InactiveUS6095987AAccurately and non-invasively and continuously measuring cardiac outputCatheterSensorsBioelectrical impedance analysisCardiac pacemaker electrode
Apparatus and methods are provided for monitoring cardiac output using bioelectrical impedance techniques in which first and second electrodes are placed in the trachea and / or bronchus in the vicinity of the ascending aorta, while an excitation current is injected into the thorax via first and second current electrodes, so that bioelectrical impedance measurements based on the voltage drop sensed by the first and second electrodes reflect voltage changes induced primarily by blood flow dynamics, rather than respiratory or non-cardiac related physiological effects. Additional sense electrodes may be provided, either internally, or externally, for which bioelectrical impedance values may be obtained. Methods are provided for computing cardiac output from bioelectrical impedance values. Apparatus and methods are also provided so that the measured cardiac output may be used to control administration of intravenous fluids to an organism or to optimize a heart rate controlled by a pacemaker.
Owner:ECOM MED

Chronically-implanted device for sensing and therapy

Systems, devices and methods are provided for providing sensing and therapy functions using a chronically-implanted device. According to one embodiment, the device includes a structure adapted to be chronically placed within a biosystem, and further includes sensing circuitry and therapy-providing circuitry attached to the structure. The sensing circuitry is adapted to sense mechanical parameters in the biosystem. The therapy-providing circuitry is adapted to provide therapy to the biosystem. According to various embodiments of the device, the sensing circuitry is further adapted to sense electrical and / or chemical parameters in the biosystem, and / or is adapted to provide electrical therapy and / or to provide drug-eluting therapy. One embodiment of the device includes a stent-like structure adapted to be chronically placed intravascularly in the biosystem.
Owner:CARDIAC PACEMAKERS INC

Method and system for processing data from ambulatory physiological monitoring

ActiveUS20050240087A1Improved robust and reliable extractionAvoid injuryElectroencephalographyElectrocardiographyPhysiological monitoringEngineering
This invention provides methods and systems for the analysis of data returned from monitoring multiple physiological parameters of a subject, especially from ambulatory multiple parameter monitoring. The methods and systems remove motion artifacts from signals and separate multiple components of single signals due to two or more physiological systems or processes. Each output signal is are preferably free from motion artifacts and reflects primarily functioning of only a single physiological system or process.
Owner:ADIDAS

Deployment device, system and method for medical implantation

A deployment device for deploying a self-expansible medical implant at a target location in a body cavity, is provided. While generally, the expansion of self-expansible structures tends to be abrupt, and the impact of expansion may cause injury, a two-stage expansion process of the present invention minimizes the impact of exapnsion. Additionally, an ability to manuever the medical imlant into position, after the first stage of expansion, provides for accurate positioning. Thus the present invention is of a deployment device for precise and well-controlled manner of deployment, so as to minimize damage to the cavity wall and to position the implant accurately at the target location. The deployment device includes: an inner tube; an outer tube; and an implant received on the inner tube and enclosed by the outer tube. The implant has a self-expansible anchoring element which is in a contracted condition when enclosed by the outer tube, expands to a partially-expanded condition when the outer tube is retracted, and expands to a fully-expanded condition when the inner tube is removed.. The implant is deployed by introducing the deployment device to the target location in the body cavity; retracting the outer tube with respect to the implant such that the anchoring element self-expands from its contracted condition to its partially-expanded condition; and withdrawing the inner tube from the implant such that the anchoring element self-expands from its partially-expanded condition to its fully-expanded condition to firmly fix the implant at the target location within the body cavity.
Owner:REMON MEDICAL TECH

Configurable patient monitoring system

A patient monitoring system can display one or more configurable health monitors on a configurable user interface. The health indicators are configured to display a physiological signal from a patient. The patient monitoring system can calculate ranges of values for the health indicator that correspond to a status of the patient. The health indicators can display different outputs based on the value of the physiological signal.
Owner:MASIMO CORP

Plethysmographic respiration processor

A plethysmographic respiration processor is responsive to respiratory effects appearing on a blood volume waveform and the corresponding detected intensity waveform measured with an optical sensor at a blood perfused peripheral tissue site so as to provide a measurement of respiration rate. A preprocessor identifies a windowed pleth corresponding to a physiologically acceptable series of plethysmograph waveform pulses. Multiple processors derive different parameters responsive to particular respiratory effects on the windowed pleth. Decision logic determines a respiration rate based upon at least a portion of these parameters.
Owner:MASIMO CORP

Pulse wave diagnosing device

When pulse waveform MH is detected by pulse wave detection sensor unit 130, wavelet transformer 10 performs wavelet transformation on pulse waveform MH and generates analyzed pulse wave data MKD. This analyzed pulse wave data MKD consists of a time region in which one heartbeat is divided into eighths, and the frequency region of 0-4 Hz which has been divided into eighths. Frequency corrector 11 generates corrected pulse wave data MKD' by performing frequency correction on analyzed pulse wave data MKD. Pulse type data generator 12 compares corrected pulse wave data MKD' over each frequency-time region, and generates pulse type data ZD indicating the type of pulse. Display 13 displays the pulse type for pulse waveform MH based on pulse type data ZD.
Owner:SEIKO EPSON CORP

High speed spectral domain functional optical coherence tomography and optical doppler tomography for in vivo blood flow dynamics and tissue structure

A method for tomographic imaging comprises the steps of providing a source of at least partially coherent radiation and a frequency-swept laser source through an interferometer; phase modulating the radiation in the interferometer at a modulation frequency for elimination of DC and autocorrelation noises as well as the mirror image; detecting interference fringes of the radiation backscattered from the sample into the interferometer to obtain a spectral signal; transforming the spectral signal of the detected backscattered interference fringes to obtain a time and location dependent signal, including the Doppler shift and variance, at each pixel location in a data window; and generating a tomographic image of the fluid flow in the data window and of the structure of the scanned fluid flow sample in the data window from the time and location dependent signal. The apparatus comprises a system for tomographic imaging operating according to the above method.
Owner:RGT UNIV OF CALIFORNIA

Surgical instruments including sensors

A surgical instrument includes a handle portion, first and second jaw members operably coupled to the handle portion, and first and second sensors associated with the first or second jaw members. The first sensor is configured to measure local perfusion in tissue grasped between the first and second jaw members, and the second sensor is configured to measure a pressure applied to the tissue by the first and second jaw members.
Owner:TYCO HEALTHCARE GRP LP

Living body inspecting apparatus and noninvasive blood analyzer using the same

The purpose is to fix a portion of a living body, which is an object of measurement, stably without strain and to acquire accurate inspection results with good reproducibility. An apparatus for capturing an image of a living body includes: a base for mounting a portion of a living body to be inspected; two sidewall members capable of holding the mounted portion of the living body therebetween from both sides; a light source section for supplying a light to the portion of the living body held on the base and between the sidewall members; and a light receiving section for detecting optical information from the portion of the living body supplied with the light, and a non-invasive apparatus for living body inspection including the above apparatus for capturing an image of a living body in which the light receiving section includes an image capturing element, and an analyzing section for calculating information on blood flowing through a blood vessel by analyzing an image of a tissue including the blood vessel obtained by the image capturing element.
Owner:SYSMEX CORP

Method and apparatus for detecting respiratory disturbances

A system and method for monitoring respiration including sensing a signal that varies with respiration, deriving a respiration parameter, applying criteria for detecting a respiration disturbance and determining one or more respiratory disturbance metrics. The system preferably includes an implantable sensor with an associated implantable medical device such that chronic respiration monitoring is possible. The implantable medical device may execute methods for detecting and measuring respiratory disturbances or may store data to be transferred to an external device for detecting and measuring respiratory disturbances. Respiratory disturbance detection may trigger a responsive action such as physiological data storage, a change in therapy delivery, or a clinician warning. Assessment of cardiac function may be made based on metrics of respiratory disturbances or a measure of circulatory delay time following detection of a respiratory disturbance.
Owner:MEDTRONIC INC

Systems, devices and methods for preventing, detecting and treating pressure-induced ischemia, pressure ulcers, and other conditions

A system for monitoring medical conditions including pressure ulcers, pressure-induced ischemia and related medical conditions comprises at least one sensor adapted to detect one or more patient characteristic including at least position, orientation, temperature, acceleration, moisture, resistance, stress, heart rate, respiration rate, and blood oxygenation, a host for processing the data received from the sensors together with historical patient data to develop an assessment of patient condition and suggested course of treatment. In some embodiments, the system can further include a support surface having one or more sensors incorporated therein either in addition to sensors affixed to the patient or as an alternative thereof. The support surface is, in some embodiments, capable of responding to commands from the host for assisting in implementing a course of action for patient treatment. The sensor can include bi-axial or tri-axial accelerometers, as well as resistive, inductive, capactive, magnetic and other sensing devices, depending on whether the sensor is located on the patient or the support surface, and for what purpose.
Owner:LEAF HEALTHCARE

Monitor configuration system

A monitor configuration system which communicates with a physiological sensor, the monitor configuration system including one or more processors and an instrument manager module running on the one or more processors. At least one of the one or more processors communicates with the sensor and calculates at least one physiological parameters responsive to the sensor. The instrument manager controls the calculation, display and / or alarms based upon the physiological parameters. A configuration indicator identifies the configuration profile. In one aspect of the invention, the physiological sensor is a optical sensor that includes at least one light emitting diode and at least one detector.
Owner:MASIMO CORP

Configurable patient monitoring system

A patient monitoring system can display one or more configurable health monitors on a configurable user interface. The health indicators are configured to display a physiological signal from a patient. The patient monitoring system can calculate ranges of values for the health indicator that correspond to a status of the patient. The health indicators can display different outputs based on the value of the physiological signal.
Owner:MASIMO CORP

Method and System for Non-Invasive Assessment of Coronary Artery Disease

A method and system for non-invasive patient-specific assessment of coronary artery disease is disclosed. An anatomical model of a coronary artery is generated from medical image data. A velocity of blood in the coronary artery is estimated based on a spatio-temporal representation of contrast agent propagation in the medical image data. Blood flow is simulated in the anatomical model of the coronary artery using a computational fluid dynamics (CFD) simulation using the estimated velocity of the blood in the coronary artery as a boundary condition.
Owner:SIEMENS HEALTHCARE GMBH

Surgical instruments including sensors

A surgical instrument includes a handle portion, first and second jaw members operably coupled to the handle portion, and first and second sensors associated with the first or second jaw members. The first sensor is configured to measure local perfusion in tissue grasped between the first and second jaw members, and the second sensor is configured to measure a pressure applied to the tissue by the first and second jaw members.
Owner:TYCO HEALTHCARE GRP LP

System and method for monitoring pressure, flow and constriction parameters of plumbing and blood vessels

The present invention provides a system and method of quantifying flow, detecting a location of an obstruction and quantifying a degree of the obstruction in a pipe characterized in pulsatile flow. The method includes the steps of (a) attaching at least two spaced pressure sensors onto inner walls of the pipe; (b) using the at least two spaced pressure sensors for recording pressure records associated with each of the at least two pressure sensors within the pipe; and (c) using the pressure records for quantifying the pulsatile flow in the pipe, for detecting the location of the obstruction in the pipe and for quantifying the degree of the obstruction in the pipe.
Owner:TELESENSE

Apparatus and methods using acoustic telemetry for intrabody communications

Systems and methods provide intrabody communication using acoustic telemetry. The system includes a first or control implant including a first acoustic transducer, and a second implant including a switch and a second acoustic transducer coupled to the switch. The second acoustic transducer receives acoustic signals from the first acoustic transducer for closing the switch to activate the second implant. The second implant may include a sensor for measuring a physiological parameter that is transmitted using acoustic signals including the physiological data to the first implant. For example, the second implant may measure pressure in the patient's heart that may be used by the first implant to control a pacemaker. Alternatively, the second implant may blood sugar concentration that may be used by the first implant to control an insulin pump. Alternatively, the first implant may store and transfer the data to an external device for monitoring the patient.
Owner:REMON MEDICAL TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Eureka Blog
Learn More
PatSnap group products