Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

241 results about "Xenotransplantation" patented technology

Xenotransplantation (xenos- from the Greek meaning "foreign" or strange), or heterologous transplant is the transplantation of living cells, tissues or organs from one species to another. Such cells, tissues or organs are called xenografts or xenotransplants. It is contrasted with allotransplantation (from other individual of same species), syngeneic transplantation or isotransplantation (grafts transplanted between two genetically identical individuals of the same species) and autotransplantation (from one part of the body to another in the same person).

Prospective identification and characterization of breast cancer stem cells

Human breast tumors contain hetrogeneous cancer cells. using an animal xenograft model in which human breast cancer cells were grown in immunocompromised mice we found that only a small minority of breast cancer cells had capacity to form new tumors. The ability to form new tumors was not a slochastic property, rather certain populations of cancer cells were depleted for the ability to form new tumors, while other populations were enriched for the ability to form new tumors. Tumorigenic cells could be distinguished from non-tumorigenic cancer cells based on surface marker expression. We prospectively identified and isolated the tumorigenic cells as CD4430CD24−/lowLINEAGE A few as 100 cells from this population were able to form tumors the animal xenograft model, while tens of thousands of cells from non-tumorigenic populations failed to form tumors. The tumorigenic cells could be serially passaged, each time generating new tumors containing and expanded numbers of CD44+CD24 Lineage tumorigenic cells as well as phenotypically mixed populations of non-tumorigenic cancer cells. This is reminiscent of the ability of normal stem cells to self-renew and differentiate. The expression of potential therapeutic targets also differed between the tumorigenic and non-tumorigenic populations. Notch activation promoted the survival of the tumorigenic cells, and a blocking antibody against Notch 4 induced tumorigenic breast cancer cells to undergo apoptosis.
Owner:RGT UNIV OF MICHIGAN

Anticoagulant fusion protein anchored to cell membrane

The invention relates to the inhibition of blood coagulation, especially during organ rejection, and in particular the inhibition of delayed vascular rejection. The invention provides anticoagulant proteins which are anchored to cell membranes. The anticoagulant function preferably provided by heparin, antithrombin, hirudin, TFPI, tick anticoagulant peptide, or a snake venom factor. These anticoagulant proteins are preferably prevented from being constitutively expressed at the cell surface. In particular, expression at the cell surface is regulated according to cell activation, for instance by targeting the protein to a suitable secretory granule. Expression of these proteins renders cells, tissues and organs less vulnerable to rejection after transplantation (e.g. after xenotransplantation).
Owner:IMPERIAL INNOVATIONS LTD

Porcine animals lacking any expression of functional alpha 1, 3 galactosyltransferase

ActiveUS7795493B2Eliminating hyperacute rejectionTransferasesHybrid cell preparationHeterograftsXenotransplantation
The present invention is a porcine animal, tissue, organ, cells and cell lines, which lack any expression of functional alpha 1,3 galactosyltransferase (alpha1,3GT). These animals, tissues, organs and cells can be used in xenotransplantation and for other medical purposes.
Owner:REVIVICOR INC

Biologically engineered stent

InactiveUS20100161032A1Promote formationPromote endothelial cell chemotaxisStentsOrganic active ingredientsMedicineIsograft
Biologically engineered stents are provided, some having novel double-walled and hybrid composition constructions that are suitable for multi-drug delivery. Some embodiments of biologically engineered stents (BES) in accordance with the invention can deliver drugs in the form of gene therapy vectors to cells in the walls of stented vessels, thereby promoting local production of therapeutic factors that attract and enhance the formation of endothelium in the stented vessel. Other embodiments of BES include xenografts, allografts or isografts comprising sleeve-like natural matrices derived from vessels of animal and human subjects including postmortem human donors.
Owner:AVELLANET FRANCISCO

Cells expressing an alphagala nucleic acid and methods of xenotransplantation

The present invention relates to methods and compositions for the reduction of xenotransplantation rejection. Specifically, the present invention relates, first, to transgenic cells, tissues, organs and animals containing transgenic nucleic acid molecules that direct the expression of gene products, including, but not limited to enzymes, capable of modifying, either directly or indirectly, cell surface carbohydrate epitopes such that the carbohydrate epitopes are no longer recognized by natural human antibodies or by the human cell-mediated immune response, thereby reducing the human immune system response elicited by the presence of such carbohydrate epitopes. In a preferred embodiment, the transgenic cells, tissues, organs and animals express nucleic acid molecules encoding functional recombinant alpha-Galactosidase A (alphaGalA) enzyme which modifies the carbohydrate epitope Galalpha(1,3)Gal. In a more preferred embodiment, the transgenic cells, tissues, organs and animals expressing the functional recombinant alphaGalA are transgenic pig cells, organs, tissues and/or animals. Second, the present invention relates to methods for xenotransplantation comprising introducing the transgenic cells, tissues and/or organs into human recipients so that a lower level of hyperacute rejection (HAR) is observed in the human recipients relative to the level of HAR observed in human recipients having received non-transgenic cells, tissues and/or organs.
Owner:THE AUSTIN RES INST +1

Liver cancer patient source heterotransplantation tumour mouse model and construction method thereof

The invention provides a liver cancer patient source heterotransplantation tumour mouse model and a construction method of the mouse model. The liver cancer patient source heterotransplantation tumour mouse model comprises a mouse, wherein treated liver tissue blocks are vaccinated under the skin of the fore limb, the shoulders and the back of the mouse. The construction method comprises the steps of taking fresh liver cancer tissue, processing the tissue, vaccinating the treated liver cancer tissue blocks under the skin below the fore limb, the shoulders and the back of the mouse without the tumor, conducting conventional breeding, and obtaining the liver cancer patient source heterotransplantation tumour mouse model. The construction process is simple and easy, the tumor forming occurrence rate reaches 40 percent to 50 percent, and the method can be used for liver cancer medicine screening and liver cancer mechanism research. The built liver cancer patient source heterotransplantation tumour mouse model has the advantages of being simple and easy to manufacture, low in death rate caused by operation, high in success rate, easy to popularize, capable of being manufactured in mass, and good in synchronism, and is suitable for medicine screening and experiment research.
Owner:南京普恩瑞生物科技有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products