Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

44 results about "Testis specific" patented technology

Testis specific 10 is a protein that in humans is encoded by the TSGA10 gene .

Biomarkers For Human Papilloma Virus-Associated Cancers

ActiveUS20110301059A1Microbiological testing/measurementLibrary screeningSynaptonemal complex protein 2Cancer cell
Cervical cancer cells and HPV+ head and neck cancer cells express three testis-specific genes not normally expressed in somatic cells: testicular cell adhesion molecule 1 (TCAM1), synaptonemal complex protein 2 (SYCP2) and stromal antigen 3 (STAG3). Among the three markers, TCAM1 and SYCP2 are early detection markers. Various methods for identifying a human or non-human animal as a candidate for further examination for cervical cancer, preneoplastic lesion for cervical cancer, head and neck cancer, or preneoplastic lesion for head and neck cancer are disclosed. Methods of detecting said cancers and preneoplastic lesions, methods of screening for drugs for treating said cancers and preneoplastic lesions, methods for monitoring the effectiveness of a treatment for said cancers, and methods of treating said cancers are also disclosed. Further disclosed are kits that can be used to practice the above methods.
Owner:WISCONSIN ALUMNI RES FOUND

Prostate-specific or testis-specific nucleic acid molecules, polypeptides, and diagnostic and therapeutic methods

The invention provides novel prostate-specific or testis-specific nucleic acid molecules, polypeptides, antibodies, and modulatory compounds for use in methods of diagnosing, treating, and preventing diseases and conditions of the prostate and testis, such as cancer.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE

Method for regulating cancer stem cell growth by inhibiting phosphorylation of 120th threonine residue of TSPYL5 protein, a composition containing the peptide sequence functioning to inhibit the phosphorylation and a use thereof

The present invention relates to a peptide suppressing the phosphorylation of threonine (T120), the 120th residue of TSPYL5 (testis-specific Y-like protein 5), which is specifically as follows. The present inventors constructed T120D, the mutant of the 120th residue threonine (T120) of TSPYL5, and T120A-TSPYL5 gene and then transfected cells with them in order to investigate the effect of phosphorylation on T120 residue. As a result, wild-type TSPYL5 and T120D moved into nucleus and stayed there. But in the case of T120A-TSPYL5, TSPYL5 did not move into nucleus and instead it was expressed only in cytoplasm. The protein could not bind to AKT, either. Instead, ubiquitination of TSPYL5 was increased but SUMOylation was inhibited. Also, the expressions of ALDH1-A1, -A3, CD44 gene and protein were reduced, and thereby the growth and metastasis of lung cancer cells were suppressed and sphere formation was reduced. Based on the observation above, the inventors constructed the peptide composed of the amino acid sequences represented by SEQ. ID. NO: 43 or NO: 44 that could inhibit phosphorylation of the 120th residue threonine of TSPYL5. The said peptide can be effectively used as a composition for the inhibition of cancer cell growth, metastasis, and cancer stem cell growth.
Owner:KOREA ATOMIC ENERGY RES INST

A method for regulating cancer stem cell growth by inhibiting phosphorylation of 120th threonine residue of tspyl5 protein, a composition containing the peptide sequence functioning to inhibit the phosphorylation and a use thereof

The present invention relates to a peptide suppressing the phosphorylation of threonine(T120), the 120th residue of TSPYL5 (testis-specific Y-like protein 5), which is specifically as follows. The present inventors constructed T120D, the mutant of the 120th residue threonine(T120) of TSPYL5, and T120A-TSPYL5 gene and then transfected cells with them in order to investigate the effect of phosphorylation on T120 residue. As a result, wild-type TSPYL5 and T120D moved into nucleus and stayed there. But in the case of T120A-TSPYL5, TSPYL5 did not move into nucleus and instead it was expressed only in cytoplasm. The protein could not bind to AKT, either. Instead, ubiquitination of TSPYL5 was increased but SUMOylation was inhibited. Also, the expressions of ALDH1-A1, -A3, CD44 gene and protein were reduced, and thereby the growth and metastasis of lung cancer cells were suppressed and sphere formation was reduced. Based on the observation above, the inventors constructed the peptide composed of the amino acid sequences represented by SEQ. ID. NO: 43 or NO: 44 that could inhibit phosphorylation of the 120th residue threonine of TSPYL5. The said peptide can be effectively used as a composition for the inhibition of cancer cell growth, metastasis, and cancer stem cell growth.
Owner:KOREA ATOMIC ENERGY RES INST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products