Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

7082 results about "Interference (communication)" patented technology

In electronic communications, especially in telecommunications, an interference is that which modifies a signal in a disruptive manner, as it travels along a channel between its source and receiver. The term is often used to refer to the addition of unwanted signals to a useful signal.

Spectral optimization and joint signaling techniques with upstream/downstream separation for communication in the presence of crosstalk

A system and method for determining transmission characteristics for a communications channel and for transmitting data on the communications channel. In one embodiment, the method starts by determining the channel's transfer function and determining interference characteristics for the channel. The interference characteristics preferably include transfer functions describing the channel's susceptibility to cross talk from neighboring channels. The channel transfer function and the interference characteristics are then examined and a transmit spectrum (or power spectral density function) is constructed for the channel. The transmit spectrum preferably uses orthogonal separation of upstream and downstream communications to increase channel capacity. This method is useable in communicating data when the channel is subject to interference from one or more other communications channels, including near-end cross talk (NEXT) and far-end cross talk (FEXT), from other channels carrying the same service and / or different services. The present invention may be used in digital subscriber-line (xDSL) communications or in a variety of other applications, such as in well-logging and in systems involving multiple interfering radio transmitters.
Owner:RICE UNIV

Adaptive antenna array methods and apparatus for use in a multi-access wireless communication system

Adaptive antenna array techniques for use in an orthogonal frequency division multiplexed spread-spectrum multi-access (OFDM-SSMA) cellular wireless system or other type of wireless communication system. A base station of the system includes an antenna array and a base station receiver. The base station receiver implements an adaptive antenna gain algorithm which estimates a spatial covariance matrix for each of K mobile stations communicating with the base station. The spatial covariance matrix for a given one of the mobile stations is determined at least in part based on a unique hopping sequence of the mobile station, and provides a correlation between signals received from the mobile station at different antenna elements within the antenna array. An average spatial covariance matrix for a set of received signals is also generated. The individual spatial covariance matrices and the average spatial covariance matrix are processed to generate an estimate of an interference matrix for the K mobile stations, and the estimate of the interference matrix is further processed to generate array responses for each of the mobile stations. The array response for a given mobile station is processed to determine an antenna weighting which is applied to a signal received from the given mobile station in order to facilitate detection of a corresponding transmitted symbol.
Owner:LUCENT TECH INC +1

Adaptive omni-modal radio apparatus and methods

InactiveUS6934558B1Easily and conveniently identifyIntense competitionMetering/charging/biilling arrangementsAccounting/billing servicesTransmission protocolTransceiver
A frequency and protocol agile wireless communication product, and chipset for forming the same, including a frequency agile transceiver, a digital interface circuit for interconnecting the radio transceiver with external devices, protocol agile operating circuit for operating the radio transceiver in accordance with one of the transmission protocols as determined by a protocol signal and an adaptive control circuit for accessing a selected wireless communication network and for generating the frequency control signal and the protocol control signal in response to a user defined criteria Among the possible user defined criteria would be (1) the cost of sending a data message, (2) the quality of transmission link (signal strength, interference actual or potential), (3) the potential for being bumped off of the system (is service provider at near full capacity), (4) the security of transmnission, (5) any special criteria which the user could variably program into his omni-modal wireless product based on the user's desires or (6) any one or more combinations of the above features that are preprogrammed, changed or overridden by the user. The disclosed invention allows wireless service providers to broadcast electronically as part of any “handshaking” procedure with a omni-modal wireless product information such as (1) rate information and (2) information regarding system operating characteristics such as percent of system capacity in use and / or likelihood of being dropped. The disclosed invention creates a user oriented source enrollment and billing service in the wireless data market by establishing uniform standard for “handshakes” to occur between cell service providers and omni-modal wireless products. In addition, the disclosed invention can be implemented on a standard chip or chipset including a radio transceiver specifically designed to be used in all types of omni-modal wireless products.
Owner:ANTON INNOVATIONS INC

Wireless communications system that supports multiple modes of operation

A wireless communications adapts its mode of operation between spatial multiplexing and non-spatial multiplexing in response to transmission-specific variables. An embodiment of a wireless communications system for transmitting information between a base transceiver station and a subscriber unit includes mode determination logic. The mode determination logic is in communication with the base transceiver station and the subscriber unit. The mode determination logic determines, in response to a received signal, if a subscriber datastream should be transmitted between the base transceiver station and the subscriber unit utilizing spatial multiplexing or non-spatial multiplexing. In an embodiment, the mode determination logic has an input for receiving a measure of a transmission characteristic related to the received signal. In an embodiment, the mode determination logic includes logic for comparing the measured transmission characteristic to a transmission characteristic threshold and for selecting one of spatial multiplexing and non-spatial multiplexing in response to the comparison of the measured transmission characteristic to the transmission characteristic threshold. In an embodiment, the transmission characteristic includes at least one of delay spread, post-processing signal-to-noise ratio, cyclical redundancy check (CRC) failure, residual inter-symbol interference, mean square error, coherence time, and path loss. By adapting the mode of operation in response to transmission-specific variables, the use of spatial multiplexing can be discontinued in unfavorable conditions. Additionally, because the wireless communications system can adapt its mode of operation between spatial multiplexing and non-spatial multiplexing, the communications system is compatible with both subscriber units that support spatial multiplexing and subscriber units that do not support spatial multiplexing.
Owner:APPLE INC

Base-station (BS)-combined direct-through terminal optimized resource allocation method in direct-through cellular system

The invention provides a base-station (BS)-combined direct-through terminal optimized resource allocation method in a direct-through cellular system. In order not to interrupt the normal communication of traditional cellular subscriber links and obtain effective gain brought by device-to-device (D2D) direct-through technology, D2D subscribers are allowed to adopt a resource allocation manner that resources are selected by a D2D subscriber end when uplink and downlink resources of the cellular system are shared; at this time, the D2D subscribers only need to consider the interference to other cellular subscribers (CUs) arising from signals of the D2D subscribers; and meanwhile, a BS centralized-control manner is adopted to carry out resource allocation, the centralized-control advantage of a BS is exerted, a BS and D2D terminal combined optimization manner is fully utilized, and the advantages of the two allocation manners are exerted. The BS-combined direct-through terminal optimized resource allocation method in the direct-through cellular system has the advantages that the resource utilization ratio and availability of a coexistent system which is provided with the D2D direct-through technology are sufficiently improved, the multiplexing gain of the resources are maximally developed, the system capacity is increased, the service types are increased, and the quality of service is ensured; and many chances for resource multiplexing are developed under the condition of limited resources from a novel resource allocation viewing angle.
Owner:CERTUS NETWORK TECHNANJING

Method for co-channel interference cancellation in a multicarrier communication system

A method for cancelling co-channel interference in a multi-carrier communication system includes receiving a serial baseband multi-carrier signal including at least one desired signal and at least one interference signal over at least one receiving branch, and converting the received multi-carrier signal into a plurality of baseband sub-carrier signals. Co-channel interference in each sub-carrier signal is cancelled by subtracting an estimated desired received sub-carrier signal and an estimated interference sub-carrier signal from a received sub-carrier signal. The sub-carrier signals are converted to a multi-carrier output signal comprising the desired signal.
Owner:DEUTSCHE TELEKOM AG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products